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Abstract of Thesis Presented to the Graduate School
of the University of Florida in Partial Fulfillment of the
Requirements for the Degree of Master of Science

AN INTRODUCTORY THEORETICAL ANALYSIS OF
PLANAR COMPLIANT COUPLINGS

By
Thomas M. Pigoski II
December, 1993
Chairperson: Dr. Joseph Duffy
Major Department: Mechanical Engineering

The behavior of two simple compliant couplings was analyzed with the
intent of better understanding the force and position relationship for improved
control.

A closed-form inverse analysis was performed on a planar two-spring
coupling. The two springs were grounded to pivots at one end and attached to a
commaor. pivot at the other. A known force was applied to the coramon pivot of
the system, and it was required to determine all of the assembly configurations.
At the outset this appeared tc be a relatively simple problem. However, this
proved not to be the case. By variable elimination, a sixth degree polynomial in
the resultant length of one spring was derived, and from this, six unique
locations of the point of application of force were obtained. The results were
verified numerically by performing a forward force analysis and displaying real
solutions. It is clear there are a maximum of six mathematical assembly

vil




configurations to obtain the desired force for such a spring system. Additionally,
the applied force was incremented, and the motion of all six configurations was
trackecl. The behavior of this system exhibited signs of both negative stiffness
and catastrophe.

The stiffness mapping for a planar three-spring coupling was analyzed
using two different reference frames. The first was rigidly attached to the fixed
body cf the coupling, while the second is attached to the moving body of the
couplirig. It was found that, in general, these matrices are asymmetric when the
coupling is loaded, and that one is the transpose of the other. These new
mappings are essential for the ccntrol of the coupling as it moves away from the
its unloaded position. Additionally, a third frame of reference which produces a
symmetric mapping is examined and found to be identical to the Hessian
obtained from the second differentials of the elastic potential energy of the
systern. However, this symmetric mapping is not useful for control purposes and
is only included to show that such a frame can be realized. Finally, static force
loci for each of the reference frames are drawn to support the notion of frame-of-

reference dependency.
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CHAPTER 1
TWO PLANAR COMPLIANT COUPLINGS

Compliant parallel mechanisms have, for a long time, played a significant
role in areas of force application such as mounting and suspension systems.
However, recent advances in the field of simultaneous force and position control
of a robotic end-effector using compliant couplings have brought about a renewed
interest in their behavior. These mechanisms can be modeled as generalized
spatial springs consisting of multiple linear springs acting in parallel fio connect
two rigid bodies. In the proposed force-control application, a coupling would be
introduced to connect a gripper\workpiece with the end link of a robotic
marcipulator. The purpose of this thesis is to examine the behavior of two simple
placar compliant couplings: the planar two-spring coupling and the planar three-

spring coupling.

1.1 The Planar Two-Spring Coupling

The first device analyzed was a planar two-spring coupling. The device
shown in Figure 1.1 in equilibrium with the externally applied stetic forces Fx
and Fy, consists of two simple translational springs acting in pzrallel, one
groanded at pivot point A and the other grounded at pivot point B. The other
ends of the springs are connected and pivoted at point P. Each of the springs can
be thought of as acting in the prismatic joint of a revolute-prisraasic-revolute

serizl chain. For this mechanism, it is assumed that the free lengths and



»

elasticity constants of the springs are known along with the distance between

pivots A and B.

l

——— dyp ______._l

Figure 1.1 Planar Two-Spring Coupling

As far as this author is aware, very little work has been done on the
closed-form inverse analysis of this device. Most of the literature has devoted
itself to forward force analysis which is inherently simple(viz. the resulting force
actiny; upon a common pivot is easily computed for a specified pivqf location).
Vanderrplaats[1] has investigated a nonlinear, iterative inverse analysis, whereby
the displacement field of the structure under a given loading is found by
minirnizing the total potential energy of the system. Numerically this method
produces a single solution to the problem. Also, Seireg[2] has used an algorithmic
approximation to obtain a single geometric solution for systems under small

loads and undergoing small displacements from the unloaded configuration.




Additional literature which is important concerns the instantaneous
kinestatics of the planar twc-parameter spring. Theoretical and experimental
work by Griffis[3] has shown that instantaneous control of force and displacement
could be achieved with this device through position control alone. A global
stiffness mapping was developed which is dependent on the instantaneous
geometry of the device and can be used to correlate a small change in the force
applied by the mechanism into a. corresponding relative motion. This mapping is
global because it holds true when the spatial spring is displaced far from the
unloaded configuration. Of significance for this analysis is the fact that Griffis[4]
found this mapping essential in determining the stability of the mechanism in a
given configuration. The development of this mapping is included in Chapter 2 of
this thesis for the sake of completeness.

In Chapter 3, a closed-form inverse force analysis is performed on the
planar two-spring coupling. A known force is applied to the common pivot of the
system, and it was required to determine all of the assembly configurations.
Additionally, the motion of the common pivot is analyzed as the applied force is
changed along a spectrum. The appearance of negative spring lengths occurred in

several examples, so a section on their significance is included.

1.2 The Planar Three-Spring Coupling

The second device analyzed is the planar three-parameter ccupling. The
coupling, shown in Figure 1.2 in equilibrium with an external static force $,
consists of two rigid bodies ccnnected together via three translational springs
actig in parallel. Again each of the springs can be considered as zcting in the

prisinatic joint of a revolute-prismatic-revolute serial chain. Again, it i3 assumed




that the spring constants and free lengths of the springs are known. However, it
is not assumed that the springs are at their respective free lengths, and hence,
the ccupling is assumed to be loaded which requires that an external static force

be applied to the moving body to keep it in static equilibrium.

- \

N

VL

Figure 1.2 Planar Three-Spring Coupling

A new theory for the simultaneous control of force and disp.acement of a
partially constrained end-effector has been proposed (see Griffis and Duffy[5],
Griffis|3] ). The spatial stiffness of a compliant coupling which connects two rigid
bodies is used to map a small relative twist into a corresponding interactive
wrench incremeat. This work can be considered an extension of the work done by
Dimeatberg[6], who derived a symmetrical stiffness mapping for an unloaded

coupling. Several other authors have reported successful results using specialized




couplings dependent on the existence of a center of compliance. (See Salisbury(7],
Mascn|§], Raibert and Craig(9], Whitney[10], and Mason[11].) However, the
impetus for this research was the appearance of asymmetrical stiffness mappings
reported by Griffis and Duffy[5] and Griffis[3] which at the outset appeared to be
incornpatible with the previously reported symmetric mappings.

In Chapter 4 of this taesis the stiffness mapping for the planar three-
parameter coupling is derived for three different reference frames. The first is
rigidly attached to the fixed body of the coupling (see Griffis and Duffy(5]), while
the second is rigidly attached to the moving body of the coupling. These
mapnings are essential for the control of the coupling as it moves away from the
unloaded configuration since it is to these two frames which a force\torque sensor
can be mounted to sense the actual static force applied to the moving body. The
thirc, reference frame was from a body that undergoes rectilinear motion with
respect; to the fixed body and is hinged to the moving body. This reference frame
always produces a symmetric mapping. This mapping is identical to the Hessian
obtained from the second differentials of the elastic potential energy function (see
Lorcaric[12]). Although yielding a simple symmetric mapping, this cannot be
used in the con:rol algorithm discussed above because no force\torque sensor can
be mounted in this reference frame. Additionally, the static force line loci
necessary to produce a specified relative motion between the moving and fixed
boclies of the coupling are included to provide another example of the frame-of-
reference dependency inherent in Chapter 4. For all three reference frames the
force locus is different, but at any instant, all such loci are showr. to share the
samz common tangent along which the current static force is applied to the

moving body.




CHAPTER 2
KINESTATICS OF COMPLIANT COUPLINGS

This chapter contains a theoretical development of planar kinestatics

which will be used in later chapters.

2.1 Generalized Line Coordinates

The two distinct points r;(xy,yq) and I5(Xg,yp) determine the line $

shown in Fig. 2.1. The line segment S joining the two points can be expressed in

the form
S=1Li-+ MJ_ (2.1)
where
. L = X2 - Xl and M = Y2 - yl (22)
] b o) 4
y ,
5
Z
S M
L
L
R
/"\¥
(o] x=
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\e

Figure 2.1 A Line in the xy Plane




are the direction ratios of the line segment. These direction ratios are related to
the distance between the two points by the relation
12 + M2 = |82, (2.3)
The moment of the directed line segment about the origin is given by the
the vector product rxS where 1 is any vector drawn from the origin to any point
containzd on the unlimited line joining ry and 1o. Since the vector {g—_gl) will be

parallel to S, the equation of a line can be written as

(1;—;1) xS =0. (2.4)
This equation can be expressed in the form

1x8 =S5, (2:5)
where

Sc=1yx8§, (2.6)

is the moment of the line about the origin represented by a vector Rk
perpendicular to the plane. The vector [S;S0]T can also be represeniec by the
ordered triple of real numbers (L.M;R) which are the homogeneous cocrdinates of
the urlimited line and must satisfy the orthogonality condition

S.'!io = 0. (2-7)
They were first established by Pliicker[13,14] and for this reason are called the
Pliicker line coordinates. They are homogeneous since the coordinates (AS; ASo)
where A is a nonzero scalar determine the same line.

The directed line segment described above can be considered as ecuivalent
to a force applied to a rigid body. Pliicker defined a force together with its
corresporiding moment vector about the origin as a wrench. A wrench on a line
will be represented as a general “ray” that is assigned the vector W = [f;mo) T,

where { i3 the force vector in the direction of the wrench and mg is the moment




vector referenced to the origin. Ray coordinates for lines (direction vector first)

are based on Pliicker’s definition of a ray as a line formed from the joining of two
points. Rays are usually assigned lower case labels. Pliicker defined a rotation
about a lLine as a twist. A twist on a line can be represented as a general “axis”
that is assigned the vector D =[58;S]T, where 68 is the magnitude of the rotation
and § is the direction of the line of rotation. Axis coordinates for lines (direction
vector second) are based on Pliicker’s definition of an axis as a line formed by
the mee: of two planes. Axis coordinates are usually assigned upper case labels.
Transforrnations which map an axis to a ray (or a ray to an axis) are defined as
correlztion, while transformations which map an axis to an axis (or a ray to a

ray) are called collineations.

2.2 The Mutual Moment of a Pair of Lines

Figure 2.2 illustrates a line $"L in the xy plane with ray coordinates

§. = s: (2.8)
!
ntr
where ¢, and s; are respectively the cos(f.) and sin(f;). Consider now that there
is a second line $, drawn through the point G perpendicular to the xy plane with
axis coordinates

e
S=|xg| (2.9)

1

e A SR i




o] &
i

Figure 2.2 The Mutual Moment of a Pair of Lines

The mutual moment is defined as §iT §(=S"T §;). From (2.8) and (2.9),

g
8775 = [ 55 14l %
1

= ri-l—ri'-(szi - chl)‘ (210)

From Fig. 2.2, (xgs; - yaS) = r;’ and therefore

§TS=r, . (2.11)

The mutual moment for these pair of lines which are themselves mutually
perpendicular is clearly their common perpendicular distance r;, and it is an

invariant.
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2.3 The Stiffness Mapping Matrix

The spatial stiffness of a compliant coupling which connects two rigid
bodies can be used to map a small relative twist into a corresponding interactive
wrench increment. In its general form, the mapping is

éw = [K] 8D, (2.12)
where &% are the ray coordinates of a wrench increment, §D are the axis
coordinates of an infinitesimal twist, and [K] is the stiffness mapping defendant
upon the geometrical and material stiffness propertiés of the coupling.

The stiffness mapping of a planar two-parameter coupling is re-derived
following Griffis[3]:

In Figure 2.3, an external force f = Fx i + Fy ] 1s applied to the system
at point P. The force is in static equilibrium with the forces in the springs , and

the system is to remain in static equilibrium as the point P displaces,

A \9 1

f————— d12

Figure 2.3 Planar Two-Spring Coupling
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It is necessary to determine the mapping of stiffness

8t == [K] 6d (2.13)

where 67 = 6Fyx i + 6Fy j 1 a small increment in f that is related via [K] to a
small displacement éd = éz i + 6y j of point P. Based on the locasions of points
A, B, ard P, the lengths | and /5 and the angles 6, and 0y can be cornputed.

I order to derive the mapping of stiffness (2.13) it is necessary to express
the external static force applied to the pivot as a resultant of the forces in the

springs:

Fx | | a < k1 (1 ~1o1)
{ F‘yj|_[ s1 S2 ”}“2(12—102)} .

where ¢, = cos(f;) and s; = sin (8,), and where k; and (I;-1,;) are respectively

the positive non-zero spring constant and the difference between the current and

h

free lengihs of the it spring.

"To obtain the mapping it is necessary to differentiate (2.14). A complete

differential gives

Iist _ - Cl 32 k[ 611 + -31 -32 k'l(ll—lol) 501-
.15Fly ) 31 32 k:z 6[2 Cl C2 k2(12—102) (502_

where {Fy and OFy are the change in force applied to the point P, 6/, and él, are

(2.15)

the change in length of the springs, and 60; and 60y are the change in the

angles 8, and 6,. An equivalent form of (2.15) is
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where the parameters, p; = { ofa/li have been introduced. Now, in order to obtain
the mapping (2.13), it remains only to make substitutions of §z and 8y for 6li

and I.86,. Rearranging (2.1€) into the form

_(S.I?y Sl 52 0 kz (512
-8y - ki(1—~p. 0 1,60
n 81 39 1( pl) 1991 (2.17)

which will facilitate the substitutions necessary.

h

Figure 2.4 illustrates the motion of the it spring of the coupling as it

displaces éd. This displacement can be decomposed into two components: an

Figure 2.4: Motion of an jth Leg of the Coupling
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radius centered at A. This latter displacement is along the line which is the
derivative of the spring with respect to Gi, 6§i = -5 1+ ¢ j- Substituting these

results into (2.17) provides the desired stiffness mapping

k11 ko _| ‘1 ¢ ‘ by 0 S|
k:z] k22 i 31 32 i_ 0 k2 C2 32
+ ‘Sl -32 kl(l - pl) 1} '31 Cl ‘2.18)
“ C2 0 k:z(l - p2) ‘31 C2
This equation may be writterr compactly in the form
6f = [K] éd , (2.19)
where from (2.18),
(K] = [i] (k) GI* + (&3] [k(1 - p;)] [63]F, (2.20)

where [j] is the formal instantaneous static Jacobian relating the differential
change in the scalar spring forces to 8f , where [6j] is its derivative with respect

to 8y and 9y, and where [k;] and [is;(1 - p;)] are 2x2 diagonal matrices.!

1Fcr cbservations about the matrix [K] and for its original derivation see
ariffis[3].




CHAPTER 3
AN INVERSE FORCE ANALYSIS OF A PLANAR
TWO-SPRING COUPLING

In this chapter, a closed-form inverse force analysis is performed on a
planar two-spring coupling. The two springs are grounded to pivots at one end
and attached to a common pivot at the other. A known force is applied to the
comnor. pivot of the system, and it is required to determine all of “he assembly
configurations. At the outset this appeared to be a relatively simple problem.
However, this proved not to be the case. By variable elimination, a sixth degree
polyromial in the resultant length of one spring is derived, and frora this, six
unique locations of the point of application of force are obtained. The results are
veriiiec. numerically by performing a forward force analysis and displaying real
solutions. It is clear that there are a maximum of six mathematical assembly
configurations to obtain the desired force for such a spring system.!

This analysis is significant not only because it produces the exact number
of assembly configurations, but also because it provides a simple tool for
analyzing the quasi-static motion of the pivot as the desired applied force
changes. In this chapter, the paths traced by the six roots are presented as the
force changes along the Fy=Fy spectrum. Using the stiffens mapping derived in
Chapter 2, the stability of the system is also analyzed along these patas. Special

cases with less than six real solution configurations are also discussed.

IMuch of the material in this chapter has been previously oresented by
Pigoski and Duffy [15].

14
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3.1 The Inverse Analysis Problem

The formulation of the inverse analysis problem is relatively simple. For
the systern shown in Figure 3.1, the spring elasticity constants (ky and ity), the
spring free lengths (I 1 and o02)» and the distance between pivots A and B (dyo)
are known a priori. It is required to compute all of the geometric configurations
for specified forces Fy and Fy. This is accomplished by locating the pivot pcint P
in terms of the resultant leg lergths of the configuration (I; and ls) and the
resultant leg tise angles (6, and 8,).

The resultant force at point P must be the sum of the forces created by

the springs in the two legs. Mathematically, this can be represented by the

following two equations:

F:c B

Fy:

where ¢y, 1, etc. represent the cosines and sines of their respective angles.

— dj2
Figure 3.1 Planar Two-Spring Coupling
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Additionally, the two equations which describe the geometry necessary for the
legs to share a common pivot point are
lgsg = 1131 3.3)
12C2 = llcl - dl(“: [34)
These four independent equations completely describe the system and are
sufficient to solve the problem. It should be noted that, in equations (3.1) and
(3.2), the forces Fy and Fy are the reaction forces which must be applied at the

pin to keep she system in equilibrium. The resultant forces (i.e. caused by the

two springs) would be equal and opposite.

3.2 The Inverse Analysis Solution

It hzs been established that it is necessary to determine the location of
the pivot point P in order to solve the inverse analysis problem. This can be
accomplished by uniquely determining a leg length and subsequently the rise
angle for either of the two legs. Here, two methods are presented to eliminate ly
and 0, from equations (3.1) through (3.4) which result in a pair of independent
equations containing g and 4. Fuarther elimination yields a sixth order
polynomial in. /.

The first elimination of [y and 8, is accomplished by rearranging (3.1) and
(3.2) into the forms

Fy - kq(ly - lp)er = ko(ly - 1g9)cg (3.5)

Fy - k(g - l,1)%1 = ko(ly - [69)59 (3.6)

which can be combined into the ratio
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FX - lvcl(l.'][. - lO])Cl _ C2

Fy -k (-1 )s;  °2° (3.7)
Cross-mulsiplying anc. making the substitution sy ; = s9¢q - s1¢9 produces

Fysg - Fycq - By(ly - 151)89.4 = 0. (3.8)
From Figure 3.1, it is clear that

al=d 3.9)
Substituting (3.8) into (3.9) and rearranging gives

Fylose - Fylgcy - ky(ly - 151)d1981 =0 (3.10)

Using (3.3) and (3.4) to eliminate lqcy and lgsy produces an equation wkich can

be expressed in the form

A].;l -+ E‘lcl == Dl (311)

where

A = Fxly - k(g - 1h1)dqg

By =-Fy |4

D. = Fy dy,.

The second el:mination begins by substituting for lgcy and lysy in (3.1)
and (3.2) using (3.3) and (3.4) which. yields

Py - Fey + kodyo = -kol_gco (3.12)

Fy - Fgq = -kol 959 (3.13)
where F == {(k;+kq)/; - k71 1}. Squaring and adding the left and right sides of

(3.12) and (2.13) in order to eliriinate 6., gives another equation which can be
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expressed in the form

where

By = 2(Fytkodyo)F
Dy = (Fytkod;g) 2+ Fy2+F2 - ko2l o2,
The coefficients in (3.11) and (3.14) are rearranged by firstly making the
substitution G = (Fx+kod;9) and subsequently expressing A in form
Ay = Fyly - kylly - l)dyg - (Rolydygkolydig)
= Gly - Fdyq.

Equations (3.11) and (3.14) can thus be expressed in the form

with the abbreviated coefficients

By = - Fyly
Dy = Fydyg
Ao = 2FyF
B, = 2GF

. (2 2, 72121 2
D2 == (J '}'Fy '{'F ‘kz 102
‘V‘here G == (Fx""k2d12).

Elirninating 6, between the pair of equations (3.15) yields
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(ABy-AgB;)%=(ADg-AgD;)2+(ByD;-B; Do) (3.16)
which is a fuaction only of 1§ and known parameters.

Substitution of the coefficients of equations (3.15) into (3.16) results in
the following sixth order polynomial:

ag 1,8 + ag 1% +ag it + ag 3 + ag 1% + ay Iy + ag=0 (3.18)
with coefficients

ag = - dyg U tkg)® + 2Gdy ok +hy)® - (GP+FyP)(k ko)
ag = 6d192k 1,1 (b +ig)>-10Gd gk 1o (ky +kp)* + 4kl (G24Fy2)(ky +hg)3
ag= dyp2(2(2Fy 2+ GRH)15k % %] (ky+hp)*
b 4Gdy o[k, 20 2Py 2-G2HH] (ky+hy)3+ 2(G(3Fy 4G
)+ By 2(Fy ko2 o2) - 3(G2+Fy D)k 2 2 (kg +Eg)
ag = 4dygieql 15k 2, 2-4F 22624 2H] (ky+hy)® - 4Qd;oky 1[5k, 12
68y % 3G24 3H (k +hg) 2+ 4k I [k 21y 2(G24Fy 2)-G(3Fy 24 G2-H)
- Py Hy Pyl )
ag = {3dyy2k, 2, 2(4(2Fy2+G2-H)-5k 21 ;2] - d) o X(GH+H22G%H

2.2 2 2 9 ey 2, 2
+4Fy kgl 0%)} (k+k9)® + {2Gdy9ky “l1 %[5kl 5y
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6(UF24GLH)] + 2Gdyo[GH+HZ4+2G2H]} (K, +ko)
(G24Fy Dk Ut + [2G2(BFy 2GR H)+2F A (Fy ko2l p 2]k, 2,
- (G24Fy2) (G4 H242G2m)

ay = 2dyo2ky0 1 (K2, 203k, 21, 2-4(2Fy 2+ G2 H)] +[GH+H24+2G%H
F4Fy2ho21 2]} (ky+y) - 2Gdy okl
+ 60dyo(2Fy 2+ G2-H)k; 31 13 - 2Gdyoky 1 [GHHH2+2G2H]

ag = -dygok; 01 ,642d 2 (2P 24 GEH)k Y 4
dyo2ky 21 H(GAH B2+ 2G2H+4F %hy 2l o?)

where (3 == Fy+kod o and H = Fy2-k21 2.

3.3 A Numerical Inverse Force Example

Here a numerical example is given which yields six real solutions. A
coordiriate system fixed at point A and oriented in such a manner that the
distance d; o lies along the x-axis was chosen, and the system constants were as
follows: k; = 1.000, ko =1.500, I, ; = 1.000, l o = 1.500, and dy, == 1.000.
Solutiors were obtained to produce the forces, Fx = Fy = 0.25 units, acting on
the pivot P.

Substituting the above values into equation (3.18), the following monic

polynomial was obtained:
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1,6- 4.000...15+3.780..1, 4+3.264...1;3- 7.045...1; 24+3.398...1, - 0.424... = 0,

which has the following six real roots:

Iy = 0.196..., 0.624..., 1.109..., 1.791..., 1.470..., -1.190...
Correspording real values of 6, were obtained from the pair of equations (3.15).
Substitution into equations (3.12) and (3.13) then produced corresponding real
values for 92. Finaly, the corresponding six real values for [, were obtained from
equations (3.3) and (3.4). The six solution sets to this problem are as follows:

1: 1):=0.196..., lp=<0.811..., §;:=346.3..., 6,=183.3...

»

1;:=0.624..., ly==1.517..., ;:=223.2..., 0,=196.3...

@

121.100..., Iy==1.225..., 6]:=239.2..., 0,=238.8..
4 1y=1.791..., 15=0.997..., 61:=343.8..., 6,=308.5...
5 1y=1.410..., y==1.379..., 6,=295.3..., 85=105.6...
6: 1y=-1.190..., I5=0.192..., ;=178.6..., 65 =35L.1...

These yizlded the following corresponding locations of the pivot point P with
respect to the coordinate system described above:

1: (xp = 0.190..., yp = -0.046...)

2: (xp = -0.455.., yp = -0.427...)
3: (xp = 0.365..., yp = -1.047...)
4: (xp = 1.607..., yp = -0.791...)
5: (xp = 0.629..., yp = 1.328...)
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6: (xp == 1.189..., yp = -0.030...) .

All six of these solutions are real achievable geometric configurations, and
a simple forward analysis was performed to verify their accuracy. Figure 3.2

shows these solutions labeled with the applied force for static equilibrium. In

Figure 3.2-6, a broken line is used to denote I, is a negative spring length.

3.4 The Significance of Negative Spring Lengths

In the above example, the sixth solution yields a negative spring length,
I;=-1.130. Given the polar nature of the coordinates (/;,0;) used o determine |
the rectilinear coordinates of point P, the meaning of the negative value of
obtained from the sixth-degree polynomial was not immediately clear. However,
a negasive spring length can be realized physically by considering & spring
comprassed through its own fixed pivot. In the above example, when P is forced
to pass through A, the spring k; has a negative spring length. It should thus be ]
clear that a spring with a negative length is in compression.
It is important to note that in Figure 3.2-6, the polar coordinates for the
pivot F are (-1.190 units, 178.6 deg), and the equilibrant force cornponents are
Fy = Fy == 0.25 units. In this solution, leg 1 is providing a force equal to -2.190
units ( = ky(l{-I;;) ) at an angle of 178.6 degrees, ;. Precisely the same
triangular solutiorn. configuration can be obtained using the polar coordinates
(1.190 urits, 358.6 deg). However, the resultant force in leg 1 would be 0.190
units aft; 358.6 degrees rather than the desired force. In the case of the latter, the

equilibrant applied force components necessary are not Fx = Fy = (.25 vnits but

Fx = -..748 and Fy = 0.289 units.
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Alttough not commonly used for problems of this sort, springs which can
achieve negative lengths can be conceived. A spiral spring under axial load will
pass through a zero length position without changing force direction. As
mentioned above, springs with a negative length are under a compressive load
and wil. inherently become increesingly unstable as the load increases. It should
be notzd, however, that no engineering solutions for the design of stable springs
in compression which will avoid possible buckling are presented here.

Additionally, the inclusion of negative spring lengths into spring problems
has a significant impact on their forward analysis. Referring back to Figure 3.1,
given the location of point P via xp and yp, spring lengths [y and ly can be
obtained. by solving the equations:

2 ) 1/2 2 ) 1 /'2.

Iy = ( sz + ¥p and g = &( (xP'dl2)2 +¥p

Traditional forward analysis considers only the positive solutions and thus
produces a single resultant force for each location in the plane of point F. When
negative spring lengths are introduced into the analysis, it is clear that there
exist four possible resultant forces for each location of point P correspcnding to
the four combinations of the positive and negative lengths of I; and Iy The
angles necessary to complete the solution sets are obtained from the polar
equations:

Xp = I cosfy, Yyp= I sinfy, Xp - d=ly cosf, and yp =1y sinfly.
This result implies that, for any n-spring system in the plane (or in space), a
forwerd analysis will have 2% (i.e. 2 for each leg) solutions including single

solution obtained from a traditional forward analysis.
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3.5 Quasi-Static Path Tracing

For the above example six solutions were also found for a zero applied
forca. These unloaded configurations are illustrated in Figure 3.3. Two solutions
occur when the moving pivot is coincident with the points labeledl R and S in
Figure 3.3. These configurations are the resultant geometries formed by the free
lengths of the two springs and are obviously symmetric about the line joining the
fixed pivots A and B. Additionally, four solutions occur on the line joining A and

B when the moving pivot P is located at points T, U, V, and W.

s

Figure 3.3 Configurations for a Zero-Load Resultant

The six possible paths traced by the moving pivot are illustrated in
Figure 3.4. These were obtained by incrementing the applied force starting at the
zero zpplied force configurations. The direction of the applied force was held
constant at 45 degrees. The six distinct paths traced by the pivot P are labeled

CF1 through CF6. The six distinct configurations for Fy = Fy =: 0.25 unit which
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are labeled on sach path by a number sign (#) in Figure 3.4 are in complete
agreement with the configurations in Figure 3.2. Further the six distinct
configurations for Fy = Fy = 0 are marked with an asterisk and are labeled R
through W as they are in Figure 3.3.

The broken lines indicate that either one or both leg lengths are negative.
A single dot indicates leg 1 has a negative length, two dots indicaie leg 2 has a
negative length, and three dots indicate both legs do. It should oe clear from
Figure 3.4 that as the curve CF3 passes through the fixed pivot A, leg length [
(which is pivoted at A) must become negative, and similarly, as the curve CF4
passes through the fixed pivet B, leg length Iy must become negative. On the
curve CF35, leg length Iy is always negative, and leg length Iy becomes negative
as point P passes through pivot B.

An interesting phenomena appears in Figure 3.4. Curves CF&, CF4, and
CF6 indicate that the pivot point P moves in a direction opposite to that which
one would expect as the force is incremented from zero. Intuitively, this would
indicate an instability in the system. Stability can be determined from the
signature of the system’s 2X2 symmetric stiffness matrix [K] at each point on
each curve. Briefly, the stiffness mapping is used to correlate a small change in
applied force into a corresponding motion by the relation:

5Fx de

= [K]
6Fy by

where as derived in chapter 2:
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ki1 k cq@ ¢ k 0 cK 8
: 11 *12 1 ™2 1 1“1
K] = =
k12 ko2 sp Ssp || 0 k) C2 %2
N '31 -32 kl(l'pl) 0 '31 Cl
Cl C2 0 ’Cz(l"p2) ‘32 02
and p; = I./1,; The signature of [K] indicates the possibilities of change of state

of potential energy in the system. The signature can be represented a3 (m, v, )
and is defined as the number of positive, negative, and zero eigenvalues of the
stiffness matrix. For example, at a point on a curve when [K] is positive
definite(2,0,0), the potential energy is concave up for all incremental
displacerments (a local minimum), and the configuration is stable. A signature of
(1,1,0) indicates a configuration of limited stability (a saddle point). A signature
of (0,2,0) indicates an unstable configuration for which the potential energy is
concave-down (a local maximum) (see Griffis[4]).

Figure 3.5 illustrates the stability of the system along the coordinate
paths traced by Figure 3.4. Broken lines indicate configurations of limited
stability and solic lines indicate stable configurations. It is interesting to note
that stable configurations exist along curves CF3, CF4, and CF5 which contain
negative spring lengths. Additionally, at the system’s unloaded configurations
which are labeled R through W, as expected, the system is stable at Points R
and & corresponding to the geometry of the system at the free lengths of the
springs, end it has limited stability when the pivot is at points T through W.
This limited stability derives from the fact that the system would be stable
against a force applied purely in the x direction but unstable against any other

force.




Y-Coordinate (units)

29

-2 -1 0 i 2 :
X-Coordinate (units)

Figure 3.5 System Stability Along Configuration Paths



30

Tt is of further interest to discuss the apparent merger of the traces CF2
and CF6 at the point M, the coordinates for which are approximately (0.811, -
1.080) and Fy = Fy = 0.317. Referring to Figure 3.4, consider the pivot P is at
the unlcaded stable position S. As the force is increased incrementally {rom zero,
the pivot moves along the curve CF2 until it is at point M. If the force is
increased above Fy = Fy = 0.317, two of the roots of the sixth orde: polvnomial
in I become complex, and only four real solutions exist. From Figure 3.5 it is
clear that M is a point of change of stability of the system. However, more
insight cen be obtained by examining the potential energy of the system with
respect to the applied force. Figure 3.6 shows the potential energy of the system
with respect to the applied force along curves CF2 and CF6. At point M the
slope of both curves goes to infinity indicating no change in potential energy
would conater the increase in force. It can be deduced that, in this configuration,
the syssem is highly unstable and will behave unpredictably.

For the sake of geometric symmetry, an incremental force acting in the
opposite direction was also applied to the pivot point P. Figure 3.7 shows the six
paths traced by the pivot under this load, again the assembly conf; gurailons are
labeled consistently with Figure 3.4. The system exhibits the same type of
behavior with leg lengths clearly becoming negative, and it shows another
instability point (also labeled M) where curves CF1 and CF3 come together.
Figure 3.8 combines Figures 3.4 and 3.7 and yields the complete picture. Finally,

Figurz 3.9 shows stability alorg these paths.
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3.6 Special Cases not Yielding Six Real Solutions

The above example exhibited the most general behavior possible for a
planar two-parameter spring. Six real configurations were obtained under a zero
force condition. Four corfigurations occurred along the line joining the two
pivots, and two occurred at free lengths of the springs. If, however, the
condition that 1+l 02<%19 exists, this latter pair cannot exist in the real plane,
and & set of complex conjugates in [y is obtained from the sixth-order polynomial
at zero force. It is speculated that for such systems only a maximam of four real
solutions can ever exist regardless of the magnitude of the applied force. Figure
3.10 shows the motion of the pivot for an example where [ Ol—{-l 02419 At the
zero-force solution indicated by S, Iy equals [ q, and this is a triple root in the
solution of the sixth order polynomial. Two of these three solutions become
complex for any other applied force. The third set of solutions is the curve which
passes through S in Figure 3.10. These systems are stable for all configurations

shiowrn.
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CHAPTER 4
FRAME OF REFERENCE-DEPENDENT STIFFNESS MAPPINGS
FOR A PLANAR THREE-SPRING COUPLING

The spatial stiffness of a compliant coupling which ccnnects two bodies is
used to map a small relative twist into a corresponding interactive wrench
increment (see Griffis and Duffy[5], Griffis[3]). In its general form, the mapping
13

6w == [K] 6D , (4.1)
where éW are the coordinates of a wrench increment, §D are the coordinates of
an infinitesimal twist, and [K] is the stiffness matrix, which in general is a 6x6
asymmetric matrix whose elements are dependent upon the geometrical and
material stiffness properties of the coupling.

In this chapter, the stiffness mapping matrix for the planar three-spring
coupling shown in Figure 4.1 is analyzed using two different reference frames.
The first is rigidly attached to the fixed body of the coupling (see Griffis and
Duffy[16]), while the second is attached to the moving body of she coupling. It is
found that these matrices are asymmetric when the coupling is loaded, and that
one is the transpose of the other. This important result can be considered an
extension of the work done by Dimentberg[6], who derived a symmetrical
stiffness mapping for an unloaded coupling. These new mappings are essential fcr

the control of the coupling as it moves away from its unloaded position.!

~ Much of the material presented in this chapter has been previously
presented by Pigoski, Ciriffis, and Duffy[17].
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Figure 4.1 Planar Three-Spring Coupling

Additionally, a third frame of reference which undergoes rectilinear
motion with respect to the fixed body and is hinged to the mcving body is
analyzed. This frame always produces a symmetric mapping and is found to be
identical to the Hessian matrix obtained from the second differentials of the
elaslic potential energy of the system. (see Loncaric[{12]) The impetus for
including this reference frame was the appearance of the asymmetries in the
above refererce frames which at the outset appeared to be incompatible with
previcusly reported symmetric mappings. Additionally, Loncaric[18] has shown
that for any generalized spring system, a coordinate system can be chosen which
will lead to a simplified form of its stiffness matrix. However, this simple
symumetric mapping cannot be used directly in a control algorithm such a that
detailed in [3] and [5) since no force\torque sensor can be mounted in this

reference frame. It is only included to show that such a frame can be realized.
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exists. Finally, static force loci for each of the reference frames are drawn to

support the notion of frame-of-reference dependency.

4.1 Fixed-Body Stiffness Mapping

Referring to the coupling shown in Figure 4.2, it is required to cletermine
a mapping that relates the axis through point P of a é¢ rotation tc a line §; of a
force (§f) increment in the static force applied to the moving body. (It is
considered that d¢ is small so that 6¢—0.) In this section, this mapping is
referenced to the fixed body, which means that the two external static forces
which keep the moving body in static equilibrium before and after the é¢
rotat'on are referenced to (or are drawn in) the fixed body. The difference in

these nwo static forces is the force increment that occurs along the line §,.

Elere, expressed in terms of an zy coordinate system that is located at
some point O in the fixed body, this mapping is

8%, = [Ko| 6D, (4.2)
where the coordinates of the force increment are 6w, = [6Fy, 6Fy; émg)T, the
coorcinates of the 8¢ rotation are §Dg = [6zo, 6yo; 64]T, and [Ko] is a 3x3
stiffness matrix. Before the §¢ rotation, the static force applied to the moving
body required to keep it in static equilibrium is given by the coordinates,
Wo = Fx, Fy; m¢)T, whereas after the §¢ rotation, the new static force is given
by the coordinates wg = [Fy, FS,*' s mg ]¥.  (The three coordinates of a force
deno‘e the projections of the force onto the z and y axes and the mcment of the
force about the point O.) The coordinates of the force increment referenced to
the fixed body are then obtained from

§Wo =W — Wy, (4.3)
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N

Figure 4.2 Motion of the Platform with respect to a
Reference Frame in the Fixed Body

where §F. = F,"é' —Fy, 6Fy = F?,' —Fy, and émg = m{)" —mg.

The infinitesimal displacements ézy and 6y, are of the poinf in the
moving body that is coincident with O, while the infinitesimal rotation é¢
denotes a change in orientation of the moving body relative to the fixed body.
These three coordinates taken together form 6Dy, which locates an axis of
rotation through the point P, whose coordinates zp, and yj, are obtained from

wp = — 6Yo/6¢ and yp == §26/64. (4.4)
When the axis of rotation is quantified by the coordinates 5, = [vps — 2p; 1]7T,

then the 54 rotaticn can be expressed as the scalar multiple
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6Dy = 6¢ S, (4.5)

In order to derive the mapping of stiffness (4.2), it is necessary to first
express the external static force applied to the moving platform as the resultant
of the forces in the springs, fq, fo, and fg:

Wo=f181+fg8y+ f3 ¥y, (4.6)
where § = [c;, s;; ri]T are the coordinates (direction cosines and perpendicular
distance from O) of the line §, of the jth spring. (Refer to Figure 4.3,

yi
coordinates of the fixed pivot point B,.) Substituting into (4.6) the relations

fi=k( - where k, and (I; -1

ci=cos(n9:i), si-—-—:;in(ﬂi), and 7, =b_.s—b . c, where b_. and byi are the

are respectively the spring constant and

th

ox) oi)

difference between the current and free lengths of the i

spring, yields
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Successive applications of (4.7), which yields %, and #g, cculd provide
the coordinates of force increment. However, in order to obtain the mapping
(4.2). it is desirable to differentiate (4.7), which yields

o~ -~

VXY

681 2 653 )

—~

locate a line

S.
The coordinates, 5—9i =[-s;, ¢ 5ri]T (where ér; =b_; c; +b

yi Si),
6%, that is perpendicular to the line of the spring §; at that line’s fixed pivot
point B, and therefore, the line §8; is defined as the geometric derivative of $
referenced to the fixed body. (See Figures 4.2 and 4.3.) An equivalent form of
(4.8) is

6Wo = kq 61y 81 + kg 6lg 89 + kg bl3 55 +

o~

| 85, 85, 8§y

where the parameters, p; = l()i/"'i have been introduced. Now, in order to obtain

the rapping (4.2), it remains only to substitute 6D, for 6l; and 1.69..

In Figures 4.2 and 4.3, the jth spring is shown to be connected to the
moving body at pivot point Ci' When the moving body rotates d¢ relative to
the fixed body about an axis through P, the moving pivot point C; displaces to
the point C{. This displacement can be decomposed into two components: an
infinitesimal displacement ¢!, along the line $i together with an infinitesimal
displacement [;66; that is tangent to a circle of radius I; centered a: B;. It should

be clear from Figure 4.3 that
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ol; = p; 66 and 166, =gq; 69, (4.10)
where p; and ¢; are respectively the perpendicular distances from P to the line $i
and from P to the line 5$2‘, which is perpendicular to §; at C;. (The lines 63; and
6$ik are parallel, separated by the distance li') The above perpendicular
distances can be obtained zs moments of the lines about P, which yields the

coordinate expressions

p; = §;r S, and g; = 55;” So (4.11)

where 6'5'?::[ — 8, € 61“;'< T (<‘51‘]'< =1 +b,; ¢+ byi s;) are the coordinztes of the

line <5$;‘. Substituting (4.11) into (4.10) and substituting (4.5) into the result
yields

él,=5T 6D, and 166, =657 8D . | (4.12)

Substituting (4.12) into (4.9) yields the mapping (4.2), where the stiffness
mat1ix is given by
(Kol = i} [k;] GI™ + (€3] [k;(1 - p))] 16717, (4.13)
where
[¢] and [k;(1 - p;)| are 3x3 diagonal spring constant matrices,

the i'? colurnn of the 3x3 [j] is 5,

"~

4 68
the i*® column of the 3x3 [6j] is 3?1 , and
i
the i*® column of the 3x3 [6j*] is 6§i*.
The stiffness matrix referenced to the fixed body is therefore expressed as the

sura of two matrices: one that is symmetric, and one that is asyrametric for

p; £ 1.
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4.2 Moving-Body Reference Frame

Referring to the coupling shown in Figure 4.4, it is required to determine
a mapping that relates the axis through point P of a (— d¢) rotation to a line $b
of a force (6f) increment in the static force applied to the moving body. In this
sectior, this mapping is referenced to the moving body, which meens that the
two external static forces which keep the moving body in static equilibrium
before and after the (—6&4) rotation are referenced to (or are drawn in) the
moving body. The difference in these two static forces is the force increment

that occurs along the line $b'

Figure 4.4 Motion of the Platform with respect to a
Reference Frame in the Moving Body
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Here, expressed in terms of an uv coordinate system that is located at

some point M in the fixed body. this mapping is

6wy = [Km] (=6Dm) , (4.14)
where the coordinates of the force increment are §®y = [6Fy, 6Fvy; mm|”, the
coordinates of the ( — §¢) rotation are 6D = [6um, 6vm; —6¢)T, and [Kpy] is a
3x3 stiffness matrix. (5ﬁm expresses the displacement of the fixed body relative
to the moving, and therefore (— §Dyn) expresses the displacement of the moving
body relative to the fixed, which is required for the mapping.) Before the ( —d¢)
rotation, the static force applied to the moving body required to keep it in static
equilibrium is given by the coordinates, Wm = [Fu, Fv; mm)T, whereas after the
(—&¢) rotation, the new static force is given by the coordinates
wh = [P, F: mi]T.  (Here, the three coordinates of a force denote the
projactions of the force onto the u and v axes and the moment of the force about
the point M.) The coordinates of the force increment referenced to the moving
body aze then obtained from

6 = Wi — Fm (4.15)

where §F, = Fl —Fy, 6Fy = F§ —Fy, and émpy, = mg = mm.

The infinitesimal displacements §uy, and dvy, are of the point in the fixed
body that is coincident with M, while the infinitesimal rotation (—5¢) denotes a
change in orientation of the fixed body relative to the moving body. (The
rotation about the axis through P is inverted from the previous section.) These
three coordinates taken together form 6§Dy, which locates an axis of rotation

through the point P, whose coordinates up and vp are obtained from

up= —bvm/(—6¢) and vp = Sum/(—69) . (4.16)
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When the axis of rotation is quantified by the coordinates Srn |vp, — Up; 17,
then the (— §¢) rotation can be expressed as the scalar multiple

5ﬁm =(~69) §m s (4.17)
which specify how the fixed body rotates relative to the moving one. The
coorcinates ( — 6]3m), on the other hand, specify how the moving bocy rotates
relative to the fixed one. This latter rotation is the one that must be used in the

stiffness mapping (4.14).

In order to derive the mapping of stiffness (4.14), it is necessary to first
express the external static force applied to the moving platform as the resultant

of the forces in the springs, f, fo, and f3:

Wim=f1 ¥+ fa 55+ fg §§ ) (4.18)
wherz § C1’ 31' r;]T are the coordinates (direction cosines and perpendicular

distance from M) of the line $i of the ith spring. (Refer to Figure 4.4,

/ T ! : / ol — ! ! S
— ; 9 - 9 r. = PR 14 . C.. Whe . C_ s
C 103\\( ].)’ S sm( ), and i C S ch Cl, h re C ancl v are the

coordinates of the moving pivot point C;.) Substituting into (4.18) the relations
fi= k-(J- ~1;), where k. and (l- -1, ) are respectively the spring constant and
ith spring, yields

difference between the current and free lengths of the i

Successive applications of (4.19), which yields Wy, and Wr'ifl, could provide
the coo:dinates of force increment. However, in order to obtair the mapping
(4.14), it is desirable to differentiate (4.19), which yields

§Wm = ky 81y 8] + kg 815 5 + kg 61355 +

o~

6% 554 5%
ky(l =1 ) 7 L 66 + kolly —1_o) 2 ) 5ot 68l + ka(ls —1_3) ) 59, 50 . (4.20)
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65!
The coordinates, -67 =[—s, c; 6r']T (where ér! i=Cy cl+c

RH lccate a line

vi S
6$' that is perper dlcular to the line of the spring $' at that line’s moving pivot
point C;, and therefore, the line 5$§ is defined as the geometric derivative of $;
refererced to the moving body (see Figure 4.4). An equivalent form of {4.20) is
§®m = ky 614 §'1 + kg 0lg §’2 + kg blg é‘g +
3%, P

k(11— pl) 59, 11 607 + ko (1 p9) 60’ 12 692+k3( - p3) 60'-1 §0%,(4.21)

where the paramoters, p; = I 1/ [. have been 1ntroduced Now, in ord=r to obtain

the mapping (4.14), it remains only to substitute §Dyp for él; and l]-59{.

In Figure 4.4, the ith spring is shown to be connected to the fixed body at
pivot point B;. When the fixed body rotates ( — 6¢) relative to the moving body
about aa axis through P, the fixed pivot point B, displaces to the point Bg. This
displacernent can be decomnposed into two components:  ar. infinitesimal
displaceraent 6l along the line $i together with an infinitesimal cisplacement
li69; that is tangent to a circle of radius [ centered at C;. In analogy with
Figure 4.3, it should be clear that

ély = p; 6¢ and li66£ =g; 8¢, (4.22)
where p, and g; are respectively the perpendicular distances from P to the line $£
and from P to the line (‘)’$i’< ! which is perpendicular to $! at B;. (TThe lines 69!
and 658;:" are parallel, separated by the distance li') The above perpendicular
distances can be obtained as moments of the lines about P, which yields the
coordinate expressions

T ¢ T &
p; = s! Sp and g; = 65, g

Sm (4.23)

where §58'=[~ o, c}; éri|T (57-;" =l +cy cf+cy s}) are the coordinates of the

line bﬁ)ik‘. Substituting (4.23) into (4.22) and using (4.17) in the result yields




48

8L =8" (~6Dp) and 1,66} = 88" (—6Dm) . (4.24)

Substituting (4.24) into (4.21) yields the mapping (4.14), where the
stiffness matrix is given by
Kon] = 1] (8] B7+157) k(1 — )] (6571, (4.25)
where
[%;] and [k;(1 - p;)] are 3x3 diagonal spring constant matrices,
the ith colummn of the 3x3 [j] is &,
.th YFTUE 6§§
the i*? column of the 3x3 [6j'] is g@z , and
the itP column of the 3x3 [6j*'] is &5
The stiffness matrix referenced to the moving body is therefore expressed as the

sum of two matrices: one that is symmetric, and a second that is asymmetric for
Pi # 1.

The results obtained in this section can be compared to those obtained in
Section 4.1 by introducing the transformations that relate line coordinates
expressed in the uv coordinate system at M to line coordinates expressed in the
zy coordinate system at O:

o

= ~ 6§1 k] A* 681 ~ , -~
g, =[] 8}, x5 = le] 6877, 657 =[] 55 and 6Dg = [E] ( - éDpy), (4.26)
i i

where
4 — 34 0
le] = S4 4 0 )
mes¢—ymc:¢ wmc¢+yms¢ 1 |

And vhere [E] =[e] = T. The angle ¢ (cd) = cos(¢) and S4 = sin(#)) is used to

measure the orientation of the u-axis of the uv coordinate systera relative to the
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z-axis of the zy coordinate system, and the coordinates zpy and ym locate the
point M in terms of the zy coordinate system at O. The transformations (4.26)
also orovide [j]=1[e]li'l, [6i] =[e][6i*], and [6j*] =[e][¢j'] An additional
transformation is also required,

8§70 = [e] 6D , (4.27)
which relates the zy- and uv-based coordinates of the fixed-body-referenced force
increraert. (The sets of coordinates, W, and §wh, are used to locate the line §,
of the fixed-body-referenced force increment, while the set of uv-based
coordinates 6%y, is used to locate the line $b of the moving-body-referenced force

incrernent,.)

Substituting the above transformations into (4.2) and inverting [e] yields
the fixed-body-referenced stiffness mapping in terms of the moving body wuv

coordinate system at M:

s&! =[] 1Ko (E] (-6Dm) - (4.28)
Substituting the transformations (4.26) into (4.13) yields
Kol = el 1] (k] G [e]™ + [e] [65"] [k, (1 = o)) (651" [e]™ (4.29)

Substituting (4.29) into (4.28), simplifying, and using the substitution

[E] = e¢] ~ T gives

87 = [Kb] (= 6Dm) , (4.30)
where

(K] = [i') (k5] G17+65™] [k;(1 — )] (637 (4.31)
A comparison of the stiffness matrices (4.31) and (4.25) shows conclusively that

[Em] = (Kol ™, (4.32)

which is indicative of the fact that the roles of the derivative lines (63) and the

kinemafic substitution lines (6$*) are reversed in the two mappings referenced to
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the fixed and moving bodies. This can be visualized by comparing Figures 4.2
and 4.4. The lines §; and $! are the same and share the same role of locating the
ith spring line. Cn the other haad, 6§; and 6$i" ! are the same lines, but they play

different roles. (The same can be said of the pair of lines 5$;‘ and §8!.)

While the relative motion between the moving and fixed bodies is the
same, it is clear from (4.32) that the fixed-body-referenced and moving-body-
referenced force increments are not the same. Due to the nasure of the
asymraetries in [K5] and (Kpq], the two force increments will be parallel acting
along the parallel lines §, and $b and having the uv coordinates (referenced to

M) of respectively, 6% and §#Wp,.

4.3 Symmetric-Body Stiffness Mapping

In this section, a stiffness mapping is derived which is always symmetric,
regarcless of the degree of loading of the coupling. With regard to the
displacernent-rotation input (616q) and the force-increment output (5Wq), the
mapping obtained here

g = [Kgl 6Dq (4.33)
agrees in philosophy with those typically found in the literature. It is customary
to express the potential energy of the system as a function of the displacement
(zg> yq) of a pre-selected point Q in the moving body and the rotation (¢) of the
moving body about an axis through Q. Often, one then finds the stilfness matrix
to be the Hessian of the resulting potential function similar to the mapping for

the two-spring coupling derived in Chapter 2.

Although the three coordinates (mq, Yq» $) are measured relative to the
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fixed. body’s zy coordinate system located at O, it is of paramount importance to
realize that the body of reference (to which the force increment éWq 1is
referericed) is not the fixed bocy. It is in fact a body that undergoes rectilinear
motion with respect to the fixed body, and it is a body that is hinged to the
moving body at Q (see Figure 4.5). In other words, both the fixed and moving
bodies dlisplace relative to the frame of reference of this section. Specifically,
while keeping the same orientation with respect to the fixed body, this body of
reference purely translates with the point Q of the moving body. Such a body of

reference is referred to here as a “symmetric body of reference.”

This means that the two external forces which keep the moving body in
static equilibrium before and after the §¢ rotation are referenced to (or are
drawn in) the symmetric body of reference. The difference in these two static

forcas is the force increment that occurs along a line $.

Referring to Figure 4.5, it is required in this section o determine a
mapping that relates the axis through point P of a §¢ rotation to a line $ctoa
force (6f) increment in the static force applied to the moving body. Here, the
mapping is (4.33), which is given in terms of a zy coordinate system located at
point; Q). Ther, the coordinates of the force increment are §Wq = [6Fy, 6Fy;
6mq the coordinates of the 6¢ rotation are 6Dq [62q, Oyq; & $]", and [Kq] is
the symmetric 3x3 stiffness matrix. Before the §¢ rotation, the static force
applied to the moving body required to keep it in static equilibrium is given by
the ccordinates, Wq = [Fx, Fy; mq] , whereas after the ¢ rotation, the new
static force is given by the coordinates v"vzl" =[F¥, Fy, mq]r (The three

coordinates of & force denote the projections of the force onto the z and y axes
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Figure 4.5 Mction of the Platform with respect to &
Reference Frame Producing a Symmetric Mapping Matrix

and the moment of the force about the point Q.) The coordinates of the force
increment referenced to the symmetric body are then obtained from

§Wq = Wg —Wq (4.34)

where 6Fx = F?{ ~Fyx, 6Fy == FS*,' ~Fy, and dmq = m('f —mgq.

The infinitesimal displacements ézq and éyq denote how the point in the
moving body that is coincident with Q displaces relative to the fixed body. The
indinitesimal rotation ¢ denotes a change in orientation of the moving body
relative to the fixed body. These three coordinates taken together form 6ﬁq,

which locates an axis of rotation through the point P, whose cocrdinates :c%, and
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yp (relative to Q) are obtained from

ap = — 5yq/6¢ and yp = 6zq/6¢ . (4.35)
When the axis of rotation is quantified by the coordinates §q = [y£), —a:%,; 1]%,
then the 8¢ rotation can be expressed as the scalar multiple

iDgq=6¢5q , (4.36)
which specifies (in terms of the zy coordinate system at Q) how the moving body
rotates relative to the fixed one. As a point of reference, it is noted that the
moving body rotates 5ﬁt = [0, 0; §¢]7 relative to the symmetric body, while the
fixed body displaces 6ﬁb = 6ﬁt - 6ﬁq =[—bzq, — 6yq; 0]T relative to the
symmetric one.

In order to derive the mapping of stiffness (4.33), it is necessary to first

express the external static force applied to the moving platform as the resultant

of the forces in the springs, f1, fon and f 3!

where § 4= lepy s 7 qi]T are the coordinates (direction cosines and perpendicular

distance from Q) of the line § g of the ith spring. For convenicnce, the point
chosen to be () is point M of section 4.1. Then, ¢; = cos(8;), s, = sin(4;), and

'I'qi = Clli Si¢ - cVi Ci¢ ; (4.38)
where c . and c,; are the uv-based coordinates of the moving pivot points of
section 4.1, where ¢ is again used to measure the angle between the u-axis and
the z-axis, and where Sip = sin(6; — ¢) and c; 6= cos(8; — ¢)- Substituting into
(4.37) the relations f, = ki(l;—1.;), where k; and (I, =1;) are ~espectively the
th

soring constant and difference between the current and free lengths of the i

spring, yields

g = ky(Iy — 1) §q1 +kally—lo9) Sqp + k33— 153) 83 - (4.39)
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Successive applications of (4.39), which yields Wq and W[{, cotld provide
the coordinates of force increment. However, in order to obtain the mapping
(4.33), it is desirable to differentiate (4.39), which yields

" aA aA 2 3: 3
6" aA rq3
byl =To1) - 266 + Fylly — L) 54 256+ kally —log) ~5a 69 (4.40)

The partial notation must be used here because a stationary pivot point in this
reference frame cannot be found and thus the coordinates § G must be located
using two variables, and ¢. Therefore, the coordinates 5§qi of the line 6% i

that is the total derivative of § gl (with respect to the symmetric body) are

_ qu 0’ 3
évSi(:liz 60 59 + r’QS 5¢ , (441)
%\
where the coordinates, 69 =[=s; ¢ 67‘ ]T (where 67' Cyi 1;15+Cv1 1¢)
0%

locate a line —0—0(—1— that is perpendicular to the line of the spring $ ; at that line’s
i
aA L
moving pivot point C;, and where, as in (4.40), a =10, 0; —ér qi] T, (Refer to

Figure 4.5.) An equivalent form of (4.40) is
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53 5y
lg(1 = p3) ao 3 1g 685+ ky(1—py) Iy 74 68+

: aIS\qZ ‘ a,S\q3

where the parameters, p; = l of / li have been introduced. Now, in order to obtain

the mapping (4.33), it remains only to substitute 6ﬁq for 61, 166, and 6¢.

In Figure 4.3, the i°h spring was shown to be connected to the moving
bodyy at pivot point Ci and to the fixed body at B;. (This figure also applies in
this section for the generation of the 4l and I 60, substitutions, where $i
corresponds here to $ qi') When the moving body rotates §¢ relative to the fixed
body about an axis through P, the moving pivot point Ci displaces to the point
C;. This displacement can again be decomposed into two components: an
infinitesimal displacement 6l; along the line $i together with an infinitesimal
displacement 1,66, that is tangent to a circle of radius [, centered at B.. It should
be cleer from Figure 4.3 that

ol = p; 6¢ and 166, =g 8¢, (4.43)
where p; and g; are respectively the perpendicular distances from P to the line $i
and. from P to the line 6$;", which ias$ perpendicular to §; at C;. The line 6$3k of

Figure 4.3 corresponds to the line 70% of this section, and therefore, the above

a9 .
perpendicular distances can be obtained as moments of the lines § G and 89q
i
abous P, which yields the cocrdinate expressions
s . ~
=(§ ll) Sq and g _(_69—) Sq - (4.44)

Sub:su]tutmg (4.44) into (4.43) and substitutmg (4.36) into the result yields
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il = (8 ;)" 6Dq and ;86 = (ia;‘.li—i)T §Dq - (4.45)
Substituting (4.45) into (4.42) yields the mapping (4.33), where the
stiffness matrix is given by
Kol = lig) [k;] g™ + 1Biq] ;1 = pp)] [9iq]” + (21, (4.46)
where
[k;] and [k;(1 - p;)] are 3x3 diagonal spring constant matrices,

the it column of the 3x3 []q] is§ b’

<he it! column of the 3x3 [djg] is ?5- and

et v 1991 3.

the 3x3 matrix [®] has zeros except for the 33 entry which is

The stiffness matrix referericed to the symmetric body is therefore expressed as
the sum of three matrices, all of which are symmetric regardless of p;. The
nature of the asymmetries in [Ko] of Section 4.1 and [Kp] of Section 4.2 yields
that the fixed-body-referenced force incrément line $,, the moving-body-
referenced force increment line $b’ and the symmetric-body-referenced force

increraent line $ are all parallel.

It is important to realize that the choice of a symmetric body of reference
is not a practical one. Amalytically, it yields the apparently simple symmetric
mapping, but the matrix [Kq] cannot be directly used in a control algorithm
such as that detailed in [3] ard [5]. This is because a force/torque sensor used to
sense the actual static force applied to the moving body is mour.ted either on the
moviag body or the fixed one. (It does not translate with the moving one, while

keeping constant orientation with the fixed body.)
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4.4 Static Force Loci

While the preceding sections have demonstrated that the mapping of
stiffness is dependent on the chosen frame of reference, this section shows, in
both the fixed and moving bodies, the line loci of the external static force which
must bz applied to the moving body to keep it in static equilibrium. A line locus
is a curve generated by the envelope of a line moving in a defired frame of
reference (a plane or a lamina). These static force loci drawn in the fixed and
moving bodies form a static analogy to the fixed and moving centrodes, which

are sheir kinematic counterparts.

Again we will use the planar compliant coupling of Figure 4.1. The line §
is tae line along which the external static force must be applied to keep the
moving body in static equilibrium while the coupling is in this particular
configuration. Figure 4.6 illusirates a candidate motion of the moving body and
shows how the line $ creates the the fized-body static force locus. Figure 4.7, on
the other hand, illustrates only the moving body and shows the moving-body

static force locus that was created by $.

Figure 4.8 shows several intermediate configurations of this same motion
with the fixed-body (F) and moving-body (M) static force loci. At each instant,
both of the loci are tangent to $, which carries the current external static force,
but they are tangent to $ at different points. This substantiates the fact that the
derivatives are frame-of-reference dependent and inherently explains the
differences in the stiffness mapping matrices derived in the previous section.

Equation (4.3) has analytically demonstrated that the fixed-body-referenced force
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increment is the difference between the external static forces before and after the
86 rotation, both drawn in the fixed body. Geometrically, this means that the
three lines in the fixed body consisting of the current static force, the next static
force, and the fixed-body-referenced force increment all pass through the same
poin:, which must be the point of tangency of § on the fixed-body static force
locus. Likewise, Equation (4.15) has analytically demonstrated that the moving-
body-referenced force increment is the difference between the external static
fcrces before and after the 64 rotation, both drawn now in the moving body.
Geometrically, this likewise means that the three lines must pass through the
same point, but here, it is the point of tangency of § on the moving-body static
force locus. It should be noted that in the example shown in Figure 4.8 the fixed
aad moving points of tangency have differing relative distances along $

throughout the motion, which means that these two curves roll with slip on §.



CHAPTER 5
CONCLUSIONS

A knowledge of the behavior of compliant couplings such as the two
presented in this thesis is essential for the improvement of modern force-control
techniques. Advanced research in the area of simultaneous position and force
contrel of a robotic end-effector, which was the impetus for this author’s work,
and in the area of active suspension systems, which is currently a hot topic of
research, will rely more and more on the basic understanding of the compliant

couplings.

5.1 The Planar Two-Spring Coupling

In Chapter 3, a novel closed-form inverse analysis of the planar two-spring
coupling was presented. This analysis not only produced the exact number of
assembly configurations for & desired resultant, but also provided a simple tool
for analyzing the motion of the movable pivot for all six roots as the desired
applied load changed. In the example of 3.3, the behavior exhibited by the
mechanism was unexpected. The motion of movable pivot P described by the
curves CF3, CF4, and CF6 of Figure 3.4 was away from the direction of applied
force. This phenomena was surprising, and intuitively it appezred to flag an
instability. However, discussion on this subject since its original presentation [15]
has revealed that mechanisms which exhibit this behavior have been seen before,

and cften they are used to compensate the action of regular springs. Their action
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has been compared with that of a spring with negative stiffness. Eijk and
Dijksman[19] have cataloged occurrences of mnegative stiffness in several
mechanisms including the planar two-spring coupling (see also Eijk[20).

Another interesting result of the inverse analysis example was the
apparent merger of the traces CF2 and CF6 at point M in Figure 3 4. If the force
were increased when the system was in this configuration, two of the roots to the
inverse solutioni went complex, and the author stated the system would behave
unpredictably. Additional discussion on this behavior revealed it to be indicative
of a “catastrophe.” A catastrophe occurs when there is a loss in continuity of a
smcoth and slow response to a smooth and slow input. Zeeman(21| has analyzed
several catastrophe machines which exhibit a “jump” to a new configuration
when a predicted critical point is reached. The analysis of this mecaanism as a
catastrophe machine is an area of further research which should be pursued.

Other areas of further research include the development of springs which
can achieve negative lengths and the development of an inverse solution for a
spatial three-spring coupling. Research on the inverse solution to this tetrahedron
problem is novel and may well have a major impact. It can be deduced that the
problera would exhibit similar catastrophic behavior. Initial attempts have so far

been unsuccessful at solving this problem.

5.2 The Planar Three-Spring Coupling

In Chapter 4, the stiffness mapping of a planar three-spring coupling was
analyzed from three reference frames: the fixed-body of the coupling, the moving
body of the coupling, and a body which always yielded a symraetric mapping

matrix. The impetus was to justify asymmetric matrices previously reported by
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Griffis and Duffy[5] and Griffis[3]. The fixed body and moving body stiffness
mapping were indeed found to be asymmetric, and one was the transpose of the
other. These mappings are essential for control of the coupling since it is to these

two frames a force/torque sensor can be mounted to sense the actual static force

applied to the moving body. The third reference frame yielded an analytically

simp.e symmetric mapping which was identical to the Hessian cbtained by the

secord differentials of the elastic potential energy function reported by

Loncaric[12]. However, this simple symmetric mapping cannot be used in current

confrol algorithms.

The resvlts derived in this thesis for the simple planar coupling can
intuitively be extended to the simple six-spring spatial coupling. At this stage
however these results are theoretical. Griffis[3] achieved successful results using a
coupling for which the mapping was experimentally derived. However, no results
have been obta:ned using a coupling for which the mapping was obtained purely
from the geometry of the coupling and the spring characteristics as outlined in
this thesis. Initial attempts at manufacturing the planar coupling cescribed in
this thesis were unsuccessful due to poor test results on the spring tc be used in
the experimental analysis. The assumption of frictionless and massless springs
has nos yet been overcome. The development of a working experimental coupling

is a subject of further research.
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