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KINESTATIC CONTROL: A NOVEL THEORY FOR
SIMULTANEOUSLY REGULATING FORCE AND DISPLACEMENT

By
Michael William Griffis
May 1991

Chairman: Dr. Joseph Duffy
Major Department: Mechanical Engineering

A new theory for the simultaneous control of force and displacement for a
partially constrained- end-effector is established based ~upon the general spatial
stiffness of the robotic manipulator. In general, the spatial stiffness of a compliant
coupling that connects a pair of rigid bodies is used to map a small twist between
the bodies into the corresponding interactive wrench. This mapping is based upon
a firm geometrical foundation and establishes a positive-definite inner product -
(elliptic metric) that decomposes a general twist into a twist of freedom and a twist
of compliance.

While controlling the general twist of the end-effector of an experimental
robot apparatus (which included compliance in the end-effector and a force/torque
sensor), the constraint wrenches and the twist freedoms of the partially constrained
gripper were simultaneously controlled, and this was accomplished by using the
inner product established for twists. This implementation as well as new analytical
results indicate that the stiffness mapping and the induced inner product will be

asymmetric,
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CHAPTER 1

INTRODUCTION TO THE THEORY OF KINESTATIC CONTROL

A knowledge of the mapping of spatial stiffness is an essential ingredient in
establishing the coﬁtrol of both.the force and the displacement of a partially
constrained rigid body. Spatial stiffness transforms a relative twist (a small
rotation on a screﬁr) between two rigid bodies into the change in a wrench that
interacts between the bodies through a compliant coupling. In the proposed
robotic application, a soft spatial spring is introduced to connect a
gripper/workpiece with the end link of its manipulator. This inherently allows the
end link to possess six degrees-of-freedom, no matter how the gripper/workpiece is
constrained. “Kinestatic Control” exploits this knowledge of the spatial stiffness
between the end link and the gripper/workpiece in a task-independent effort of
simultaneously controlling the force and the displacement of the gripper/workpiece
while solely controlling the displacement of the end link.

The spatial stiffness between two rigid bodies connected together by é
compliant coupling, which is essentially a six-dimensional spring, is modeled by the
spatial stiffness of a passive parallel mechanism. The simplest model for a “spatial
spring” is a parallel mechanism that consists of six linear springs which act in-
parallel conmecting two platforms together. One platform is considered to be
embedded in each of the rigid bodies. (See Figure 1.1.) The model thereby
obtained is the most general in thé scise that it can be used to quantify the spatial

stiffness between any two rigid bodies, regardless of how complex is the coupling
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between the two bodies. It supersedes a previous and widely accepted model that
is dependent on the existence of a center-of-compliance. (See Salisbury [1980],
Mason [1981], Raibert and Craig [1981], Whitney [1982], and Mason [1982].) This
is illustrated by Figure 1.2 where three in-parallel TRPT serial chains cointersect
at the center-of-compliance.

The proposed parallel mechanism model consists of six in-parallel SPS serial
chains. (See Figure 1.1.}) A more general parallel mechanism of this form would
consist of six distinct connecting points on both platforms. This level of
complexity is, however, not required to quantify 2 symmetric spatial stiffness
between two rigid bodies, and the Stewart Platform of simple octahedral geometiry
can be used. The two platforms can thus be connected togéther by six le.gs that
meet in a pair-wise fashion, sharing connections at three points on each platform.
In practice, the six leg springs of the Stewart Platform can be calibrated so that,
over a wide range of motion, the spatial stiffness of the resultant mechanism
quantifies the spatial stiffness of the actual coupling (the spatial spring) between
the two given rigid bodies.

The new theory of Kinestatic Control adopts this proposed stiffness
modeling technique and applies it to the task-independent, simultaneous regulation
of the force and the displacement of the gripper/workpiece of a robotic
manipulator. The author considers that this new control theory supersedes such
theories as “Stiffness Control” and “Hybrid Control,” which essentially rely on
erroneous task-dependent estimations of robot stiffness that require the existence of
a center-of-compliance. These theories inherently depend on the specialized model

of stiffness illustrated in Figure 1.2.
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The author believes that an investigation of sparsity in the orthogonal
complements associated with Hybrid Control reveals an uncertainty as to the
modeled values of the three rotational and three translational spring constants of
the mechanism shown in Figure 1.2, Hybrid Control theory thus restricts the
center-of-compliance to be a task dependent point, and it does not in any way
incorporate the stiffness of the manipulator into the hybrid controller. Special
situations where a robot apparently has a center-of-compliance that is concident
with a task dependent specification have been reported. (For example, see Raibert
and Craig [1981] or An and Hollerbach [1989], where a point on the prismatic joint
of a polar (RP) manipulator is aligned with a task, or see Whitney [1982], which
discusses the positioning of the center-of-compliance of a Remote-Center-of-
Compliance (RCC) device along the axis of a peg.)

Employing the theory of Stiffness Control allows a programmer to choose
the location of a center-of-compliance and to adjust the three rotational and three
translational spring constants according to a particular task. This mapping of
stiffness is then reflected onto the individual joints of the robot. The technique
thus essentially represents an adjustable set of gains, which must be synthesized for
each given task as well as for each given robot.

Here, a novel theory of Kinestatic Control is proposed, which essentially
accepts the stiffness of a robot for what it is and uses it to simultaneously control
force and displacement'. As a foundation for the new theory, this chapter
investigates two representations of the mapping of stiffness, describes the general
model of stiffness, and finally, discusses three robotic applications. Throughout
this chapter, only positive-definite symmetric mappings of stifiness are considered.

However, the remaining chapters employ more general stiffness mappings.




1.1 The General Mapping of Stiffness

Consider a rigid body 1 to be connected to a rigid body 0 by a general but
initially unloaded compliant coupling that via its spatial stiffness restricts any
relative spatial motion between the bodies. Then, the resulting mapping of
stiffness is a one-to-one correspondence that associates a twist describing the
relative displacement between the bodies with the corresponding resultant wrench
which interacts between them. Figure 1.3 illustrates this compliant-coupling-
dependent relationship by suggesting that for a given resultant wrench applied to
body 1 of a “small” intensity 6 f on the screw §;, the corresponding twist of body 1
relative to body 0 is of a “small” angle 68 on the screw $2.1 The term “small” is
introduced to convey that the intensity 6f of a wrench on the screw §; is limited
such that it produces a twist of intensity 66 on a screw 3, via a linear mapping of
stiffness.

Consider a spatial spring system consisting of the two bodies and the
initially unloaded compliant coupling. Any work input to the system is i)ositive,
and from Figure 1.3,

§F 60 ((hy + hy) cos ayg — ayg sin ayp) > 0, (1.1)
where hy and hy are the pitches of §; and $5, and where a,5 and a5 are the
perpendicular distance and swept angle between the lines of the two screws. The
expression in (1.1) is the summation of three products: the work done by the force
on the translation (&f hg 66 cos a;9), by the force on the rotation

(-—a.12 éf 66 sin a12), and by the couple on the rotation (ky 6f 66 cos aflz).

1The wrench is illustrated in Figure 1.3 employing a Hunt “wrench
applicator”, which is a TPHT serial chain. A force éf generated in the P joint
applies force 6 f to body 1 and simultaneously generates a couple —h, 6f in the H
joint, which in turn applies an equal and opposite couple ky éf to body 1. In other
words, a wrench of intensity 6f on screw $ is applied to body 1.
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A pair of screws are said to be reciprocal when the expression
((hl +ho)cos ay9— aq9 sindlz) vanishes. Accordingly, since the work input into the
spatial spring system must be positive non-zero, (1.1), then the twist of the
coupling cannot be reciprocal to the wrench that produces it.

The transformation of screws illustrated in Figure 1.3 is represented here
analytically in two geometrically different ways. Each of the two analytical
representations requires the use of a 6x6 stiffness matrix to perform the mapping of
stiffness. In comparison, these two stiffness matrices [K] and [k] differ in
geometrical foundation: [K] is used to establish a potential energy-based inner
product for twists, while [k] defines the “eigen-screws” and “eigenstiffnesses” for the
transformation, which are, in other words, the invariant properties of the mapping.

A wrench on a screw will be represented as a general “ray” that is assigned
an RO vector w=[f; M), where f is a force vector in the direction of the wrench and
M, is a moment vector referenced to the origin. This ordering of s;:rew coordinates
is based on Pliicker’s definition of a ray, which is a line formed from the join of two
points. (See Pliicker [1863] and [1866].) However, a twist on a screw will be
represented using two different formats, one based on the ray, &-—-[5; Xo), and the
other based on a general “axis” that is assigned an RO vector, D=[X,; 6]. Pliicker
defined the axis to be dual to the ray, and the axis is thus a line dually formed
from the meet of two planes.

For a twist, § and © both represent the direction of a finite but “small”
rotation, and %, and X, both represent a “small” displacement of the origin.

Therefore, the axis and ray representations of the same twist are related by

§ ) 10515 %
Zo| |1304 6 [



which can be more conveniently written as
d =[A] D, (1.2)
where [A] is the symmetric 6x6 matrix of above. Since [A]"l:[A], a reversal in
the ordering of this same transformation yields
D =[a] d. (1.3)
The transformation described by (1.2) and (1.3) is an example of a more
general transformation, defined as a correlation, that maps an axis to a ray (or a
ray to an axis). It is important to distinguish this transformation from a

collineation, which maps a ray to a ray (or an axis to an axis).

1.2 A_Positive-Definite Inner Product for Twists
The first analytical representation [K] of the mapping of stiffness is a general

correlation of screws that assumes the form,

w = [K] D, (1.4)
where axial coordinates D are assigned to the twist, where ray coordinates W are
assigned to the wrench, and where [K] is a symmetric (non-singular) 6x6 matrix.
For instance, in Figure 1.3, the screw §, with axial coordinates D=[X,; 6] is
transformed into the screw $; with ray coordinates v‘v=[f ; Mg).

The potential energy stored in (or work input into) the spatial spring system
can be expressed in terms of the axis coordinates of the twist and the ray
coordinates of the wrench, and the same positive-definite expression first given in
(1.1) can alternatively be written in the form

Xo - f4+40 . m@,=D0Tw > 0. - (L5)

Substituting W from (1.4) yields that a given non-singular matrix [K] is not

only symmetric but also positive-definite: |

DTw=DT[K]D > 0. (1.6)
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The expression in (1.6) introduces a quadratic form that can be used to
establish a potential-energy-based, positive-definite inner product for the axial
coordinates of twists. The symmetric bi-linear form for the axial coordinates ]31
and f)2 of a pair of twists is therefore,

(D;, Dy) = DT [K] Dy, (1.7)
the dimension of which is work. Accordingly, this inner product satisfies three
necessary conditions that establish the RS used for the axial coordinates of twists as

a non-degenerate inner product space:

e (Dy, Dy) = (Dy, Dy) (symmetry)

. (f)l, A Dot p D3) =\ (151, 152) + 4 (151, ]53) (linear multiples)

. (]51, 151) > 0, and (f)l’ 151) =0 (positive-definiteness).
if and only if D; = 0.

Since the inner product given in (1.7) is positive-definite, it cannot establish
an invariant Euclidean metric for screws.? (See Loncaric [1985], Brockett and
Loncaric [1986], and Lipkin and Duffy [1985].) It would in fact induce an elliptic
metric because it possesses a positive-definite quadratic form that operates on
homogeneous coordinates, i.e. only imaginary D would satisfy DT [K] D= 0.
(Coordinates such as ]5:[0,0,0,0,0,0]'1' are not considered.) (See Lipkin and Duffy
[1985] and [1988].) '

Because the mapping of stiffness (and its inner product) does not induce a

Euclidean metric, it must undergo a chasge in representation whenever a change of

2For a Euclidean metric to be induced based upon an inner product
represented by [K], then [K] must satisfy the relation [K]=[E|T[K] [E|, where [E]
describes a Euclidean transformation (collineation). (See Duffy {1990].) It will be
shown however that the inner product described by [K] does not satisfy this
relation. (See Equation (1.12).)
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coordinate system is encountered. For a general Euclidean change of coordinate

system, the ray coordinates W:[F ; Mg of a wrench are transformed by the relation
Wr=[e] W, (1.8)

where Ww'=[f’; )] are ray coordinates of the wrench in the “new” system, and

where the 6x6 [e] takes the form,

(e] ={ Rg 03 :I
AgRy Ry

Equation (1.8) represents a Euclidean collineation of screws, and it is specified by
R4 and Ag, which are, respectively, 3x3 rotation and 3x3 skew-symmetric-
translation matrices. Under the same change of coordinate system, i.e. the same
Euclidean collineation of screws, the axial coordinates D=[X,; é] of a twist are
transformed by a similar relation,

D=[E] D/, _ (1.9)
where. ]5':[}_('6; é’] are axial coordinates of the twist expressed in the new

coordinate system, and where [E] takes the form,
[E] =[ R3 A3 R3 }
03 Ry

Substituting (1.8) and (1.9) into (1.4) and subsequently inverting [e] yields a new
description of the same spatial spring system, viz. W’:[e]'l[K][E]ﬁ’, and because
[E]T=[e]'—1, this can further be expressed in the form

+ = [E]T [K] [E] D'. (1.10)
Therefore, the representation of the mapping of stiffness in the new coordinate

system 1is
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W = [K'] D/, (1.11)
where from (1.10),
[K'l=(E]* [K][E]. (1.12)
Equation (1.12) illustrates three important properties of the representation,

{K], of the mapping of stiffness that describes a given spatial spring system:

e It is symmetric, regardless of coordinate system.

e It is likewise positive-definite. Equation (1.12) is of the utmost
importance because it illustrates that the eigenvalues (and eigenvectors) of a
correlation have no invariant geometric meaning for Euclidean collineations,
i. e. the equation does not relate similar matrices. Equation (1.12) does,
however, relate congruent matrices that in general must have the same
invariant signature (x, v, () which is defined as the number of positive (7),
negative (v), and zero ({) eigenvalues. For (1.12), the congruent matrices
[K'] and [K] both have six positive eigenvalues (7=6) that are not equal
(unless [E]T=[E]~1).

e In general, it is not necessary that (K] be diagonalizable for some [E|.
This latter property is also of the utmost importance since it reveals that in
general, one must not use a model of stiffness based upon a center-of-
compliance. (See Figure 1.2.) In fact, it will be shown later that a proper
model for general spatial stiffness is the Stewart Platform device illustrated

in Figure 1.1.

It is also important to realize that the inner product (f)l, f)2) is dependent

upon the representation [K] of the mapping of stiffness. (See Equation (1.7).)
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Consider now that the inner product is defined in the “new” coordinate system by

(D4, DY) = (D))" [K'] D, (1:13)
where 155_ and D'2 are the axial coordinates of the pair of twists expressed in the
new coordinate system. The scalar quantity, work, resulting from the inner
product is preserved by substituting (1.12) into (1.13), regrouping, and
subsequently substituting (1.9), which yields

(D4, By = (DY) [EI7 (K] [E] Df

= (IB] B}, [E] DY)

= (D;, Dy). (1.14)
Here, f)l and f)2 are the axial coordinates of the same two twists expressed in the
old coordinate system.

In the experimental implementation of this theory (Section 2.3), the inner
product established here for twists is used to decompose in a meaningful way a
general twist of a partially constrained gripper/workf)iece into an allowable twist
(twist of freedom) that is consistent with the environment together with a
corrective twist (twist of compliance) that nulls an error due to the difference
between a command wrench and the actual wrench acting upon the

gripper/workpiece.

1.3 The Eigen-Screws of Stiffness

The second analytical representation [k| of the mapping of stiffness is a
general collineation of screws that assumes the form,
w = [K] d. (1.15)

This form differs from the correlation given by (1.4) because ray coordinates d are
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now assigned to the twist.> For the example in Figure 1.3, the screw $2 that is now
assigned the ray coordinates &=[§; Xo] is transformed into the screw §; with ray
coordinates w=[f; ). A
The characteristics of [k] can be determined by substituting (1.3) into {1.4),

which yields

W = [K][4] 4, (1.16)
and comparing with (1.15),

] = [KI[A] (1.17)
This effectively combines two successive correlations of screws, the first, ray to axis
and the second, axis to ray. Therefore, the overall transformation is the
collineation form of the mapping of stiffness, viz., ray to ray.

. Consider now that another twist of an angle 66 on a screw §; is chosen to be
transformed under the mapping of stiffness, such that the wrench obtained acts
upon the same screw $; with an intensity 6f. (See Figure 1.4.) This screw is
accordingly defined as an “eigen-screw of stiffness” and the ratio of intensities of

the wrench and the twist is defined as the corresponding “eigenstiffness”, x.. All

T
six such occurrences of these eigen-screws and their corresponding eigenstiffnesses
can be determined from the eigenvectors and eigenvalues of [k].

It is important to recognize that the eigenvectors and eigenvalues of the
matrix [k] are always real, and therefore, the eigenscrews and eigenstiffnesses of the
mapping of stiffness are also always real. For a symmetric positive-definite [K]—1
and a symmetric [A], the solution to the “generalized” eigenvalue problem

5 [K]71 d = [A] d yields that the product [k]=[K][A] possesses r=al eigenvalues
and eigenvectors. (See Korn and Korn [1968].)
SEquation (1.15) was in fact the form that Dimentberg [1965] used to

describe the mapping of stiffness for two rigid bodies that were connected via a
general compliant coupling.
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Figure 1.4
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$

are described

Consider that the six eigen-screws $;, TR T T $v, and §_ .,

ry

by the six eigenvectors of [k], which are the ray coordinates &i’ aﬁ, ds.., &i v A

A

~

and d respectively.  (The eigenvectors are not necessarily unitized ray

vi?

coordinates.) Consider also that the corresponding eigenstiffnesses, K, Kis

n Kk

i fiv

k.., and k_., are obtained as the corresponding eigenvalues of [k]. Then, an eigen-

v? vi?

screw, such as §;, transforms according to the relation

ki di = [k] d;. (1.18)
When comparing (1.15) with (1.18), it should be clear that the dimension of «; is
force/rad and that «; is the ratio of the intensities of the wrench and the twist
acting om §;.

From Figure 1.4, the positive work into the spatial spring system done by a
wrench on a twist that is on an eigen-screw is expressed by

5f60(2h) > 0. (19)
This result can also be deduced from the left side of (1.1), by substituting a4=0
and hy=ho=h.. Finally, substituting the relation 6 f=x; 60 yields

2 (66)% 5, by > 0, (1.20)
which shows that the eigenstiffness and the pitch of the eigen-screw must have the
same sign and must be non-zero. It should also be clear that the pitch of the eigen-
screw is finite, since work cannot be done by a couple on a translation.

Invariance is always the key issue in geometry, and this section reflects this
philosophy. With this in mind, consider now that a coordinate system has been
changed, by for example (1.8). Then, in an analogy with the development of
(1.10)—(1.12), the new representation of the collineation form of the mapping of

stiffness can be obtained by substituting [e] W' for % and [¢] d’ for d in Equation

(1.15) and subsequently inverting [e], and
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W = [e]7L K] [e] 4, (1.21)

which is equivalent to | |
W = [K] &, (1.22)

where the new representation of the collineation form of the mapping of stiffness is
k) = [e] ! K] [e]. (1.23)
In contrast with Equation (1.12) which related congruent matrices, Equation
(1.23) relates similar matrices. This reflects the fact that the eigenstiffnesses are
invariant with a change of coordinate system. Although their representations
certainly change, the eigen-screws in both (1.15) and (1.22) are the same, i.e. the
eigenvectors of [k'] represent the same six screws as do the eigenvectors of [k], and

these six pairs of eigenvectors are ray coordinates related by applications of {1.8).

1.4 The General Model of Spatial Stiffness

It has been established that the mapping of stiffness can be represented in a
correlation form (1.4) that uses a symmetric positive-definite 6x6 matrix {K]. For
this representation, axial coordinates D of a small twist of one body relative to
another is transformed into the ray coordinates W of the corresponding small
change in the wrench that interacts between the two bodies through a real
compliant coupling.

This section provides the analytics that are necessary to model any real
complicated compliant coupling, whether loaded or unloaded, by the general model
of stiffness illustrated in Figure 1.1. The forward displacement analysis of this 3-3
Stewart Platform is knowz and reducible to an eighth degree polynomial (Griffis
and Duffy [1989]).
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Consider that referenced to some coordinate system, the unitized ray
coordinates, i, i=1, 6, of the six lines illustrated in Figure 1.1 are known and form
the columns of a 6x6 matrix [j]. These lines are in fact the lines of action of the six
scalar forces, f;, =1, 6, of the six linear springs that constrain the motion of the six
prismatic joints of the Stewart Platform model.

Firstly, it is necessary to comsider a static analysis of the top plétform The
ray coordinates (E fi iy ) of the resultant of forces that the top platform applies
to the springs in the legs are equal to the ray coordinates Wq of the resultant of the
remaining wrenches that are applied to the top platform by other bodies. This can
be expressed in the form,

Wwo = [j] £, (1.24)
where f is an RO vector of the scalar forces (f; =1, 6) applied to the springs by the
top platform. The force in a given leg, f;, is related to the difference between the
loaded and unloaded spring lengths, (4~ oi)’ by fi=ki(li-—l oi)’ where k; is the
positive spring constant of the ith leg. In the following analysis, it is assumed that
eventhough the legs deflect, they do not deflect considerably from their unloaded
position, i. e. the ratio ! ./l; does not deviate far from unity.*

In order to obtain a representafion of spatial stiffness, [K], this static
analysis of the loaded model is now related to small deflections in the legs. A small
deviation from a current given operating state of (1.24) can be accommodated by
considering small changes in W, and { to be respectively w and éf. Now, consider
that the spring constants of the six legs form a diagonal matrix [k;] and that
&f;=k; él., where 6l is a small change in the spring (or leg) length. Repeating for
all legs and substituting into (1.24) yields

=[] [&] 4l | (1.25)

*Chapter 3 relies upon the dimensionless parameters p; =1 ./l to illustrate
that even the simplest compliant couplings become a.symmetnc as they deviate
from their respective unloaded configurations.
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where 61 is an RO vector of scalar leg deflections. The entries of the diagonal
matrix [k;] are to be determined experimentally such that the Stewart Platform
model represents accurately the spatial stiffness of the actual coupling between the
two bodies.
Now, the work done by a given leg force is f, 4l;, and this is equal to
(f; rhi)T D, where D is the twist of the top platform relative to the base. Equating
these two expressions for work, dividing both sides by f;, a,nd'repeating for all legs
yields the matrix expression
51 = [j]* D, (1.26)
which is the reverse kinematic solution.
Substituting (1.26) into (1.25) gives the correlation form representation of
the mapping of stiffness for the resultant model,
W = i} [k] (17 D. (1.27)
Comparing (1.27) with (1.4) yields
K] = (] %] G (1.29)
The matrix [K] contains twenty-one independent parameters (due to
symmetry), whereas [k-i] and [j] respectively contain six and eighteen independent
parameters. Each column of [j] consists of the six ray coordinates of a line (four
independent parameters) that joins a point in the base to a point in the top
platform. Hence, the six columns of [j] contain separately a total of twenty-four
independent paraineters. However, the six lines meet pair-wise at six points, which
imposes six conditions and reduces [j] to containing a total of eighteen independent
parameters, and these together with the i parameters of [k;] result in a total of
twenty-four parameters for [kl} and [j]. Therefore, given a general [K] of twenty-

one independent parameters, it is necessary to specify three further conditions (i. e.
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to solve for [k;] and [j]). These additional free choices can ideally result in a
virtually unchanged [j] for a wide range of relative motion between the two rigid
bodies. In other words, the model should be designed such that changes in actual
spatial stiffness ([K]), resulting from finite changes in relative position and
orientation between the two rigid bodies, are accommodated as far as possible by

changes solely in [k;].

1.5 Parallel and Serial Arrangements

Consider two bodies to be connected in-parallel by a pair of Stewart
Platform models, represented in the correlation forms [K,] and [Ks]. (See Figure
1.5a.) It is required to determine the equivalent mapping of stiffness for an
equivalent model, represented by [Kg]. This can be accomplished by considerigg
that

We = Wy + Wo, (1.29)
where We, Wy, and W, are ray coordinates of the resultant wrenches due to models
[Ke], [K{], and [Ko], respectively. Substituting (1.4) for each of the models yields

[Ke] De = [K;] De + (K] De, (1.30)
where D are the axial coordinates of the twist that is the same for each of the
three models. This result yields
Kel = [Ky] + Ky, (131)
which is the spatial equivalent of two single degree-of-freedom springs connected in-
parallel.

Consider now that two models are connected in series. (See Figure 1.5b.)

Then, the base of the model [K] is the top platform for the model [Kq]. It is

required to determine the equivalent mapping of stiffness for an equivalent model,
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[Ke], whose base is attached to the base of [K,] and whose top platform is attached
to the top phtform of [Ko]. This can be accomplished by analogously considering
that
De = D; + Do, (1.32)
where Dg are the axial coordinates of the effective twist relating the relative motion
between bodies 2 and 0, and f)l and ]52' are the axial coordinates of the two
intermediate twists, which relate the relativé motions of bodies 1 and 0 and bodies
2 and 1, respectively. Sﬁbstituting the inverse of (1.4) for each of the models yields
[Kel ™1 We = [Ky] 7! e + [Ko] ™t e, (1.33)
where W, are the ray coordinates of the resultant wrench that is the same for each
of the three models. Therefore, the effective mapping of stiffness for two models

that are connected in series is obtained from the sum of the two spatial

compliances:

[Kel 7 = Ky 7L + [Kg] L, (1.34)
where the term “spatial compliance” is used to denote the inverse of spatial
stiffness. Equation (1.34) is the spatial analogy of a pair of single degree-of-freedom

springs connected in series.

1.6 Robotic Applications

This representation of stiffness provides a novel and attractive way of
properly utilizing spatial displacements to control general systems of forces/torques
acting in combinations upon a body. When the rigid body is the gﬁpper/ workpiece
of a general, six degree-of-freedom robotic manipulator, then, based on the
guidelines set forth in this work, a new algérithm emerges for the simultaneous

control of an allowable twist and a constraint wrench.
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The end-effector is considered to comsist of two rigid bodies, one the
gripper/workpiece and the other,r the end link of the manipulator. In order to
implement the new algorithm, the end link and the gripper/workpiece must be
connected together by some compliant connection such as, for example, an
(instrumented) Remote-Center-of-Compliance (iRCC) device.® (A force/torque
sensor is also needed in the connection.) The spatial stiffness of the iRCC can be
easily quantified by an octahedral Stewart Platform model. This model of the
iRCC is more attractive than the center-of-compliance model, since it is not
necessary to operate the iRCC within bounded regions which were designed to
contain a center-of-compliance.

When unconstrained, the gripper/workpiece is considered to be connected to
ground by two spatial springs connected in series. (Figure 1.5b also illustrates this
when the gripper/workpiece is considered to be body 2, the end link considered to
be body 1, and ground considered to be body 0.) One of the spatial springs is the
manipulator itself, which connects the end link to ground, and its spatial stiffness
can be modeled by a Stewart Platform and represented by {K;]. The other spatial
spring is the iRCC that connects the gripper/workpiece to the end link of .the
manipulator. The mapping of stiffness of the second spatial spring can be
analogously represented by [Ko]. From (1.34), it is clear that the effective spatial
stiffness relating the unconstrained gripper/workpiece to ground, [K¢], is obtained
from the sum of the inverses of [K;| and [K,|]. When the effects of the inverse of
[K;] is minimal in comparison with the inverse of [Ks), i. e. the iRCC is far more
compliant than the manipulator, then the compliance of the manipulator can be
neglected. In other words, [Ke] =~ [K,] when the manipulator is much stiffer than

the end-effector’s wrist (IRCC).

3The Charles Stark Draper Laboratory, Cambridge, MA.
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Consider now that the gripper/workpiece is fully constrained with respect to
ground and that the iRCC is initially unloaded. Al.though the gripper/workpiece is
fully constrained, the end link still possesses six degrees-of-freedom due to the
compliance in the iRCC. Since there can be no twist of the gripper/workpiece
relative to ground, then the twists of the gripper/workpiece relative to the end link
and of the end link relative to ground must be on the same general screw §, but
their rotations, 68y and ¢4, must be in opposing directions. (See Figure 1.6.) This
means that f)l-—-—-f)2, where ]31 and ]32 are the axial coordinates of the twists of
the end link relative to ground and of the gripper/workpiece relative to the end
link. Therefore, based upon a twist of the end link relative to ground, the iRCC is
subsequently loaded with a wrench whose ray coordinates are W=[Ko)] ]52.
Substituting f)2m-»f)1 and neglecting a gravity wrench yields the small wrench that
is applied to the gripper/workpiece by ground due to the twist of the end link,

W = = [Ko] D;. (1.35)

Consider further that there is a general wrench with ray coordinates Wy
reacting between the gripper/workpiece and ground which is to be controlled. In
order to begin to null an error between the desired wrench and a known (sensed)
actual wrench with ray coordinates wg, a small corrective twist of the end link
relative to ground is needed. The axial coordinates, ﬁc=131, of the proper
corrective twist can be obtained by inverting (1.35), and expressing it in the form,

Do =~ G [Ko 1 e, | (1.36)

where G is a single dimensionless scalar gain that is used to limit 66.=66; of the

corrective twist command, and where Wwe=W,—Wg. This corrective twist is to be
supplied by commanding the six joint motors of the manipulator. Therefore, the
control of the twist of the end link relative to ground regulates the reaction wrench

between the gripper/workpiece and ground.
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Finally, consider the situation where the gripper/workpiece is only partially
constrained with respect to ground via a stiff connection. Figure 1.7 illustrates an
example of line contact between the gripper/workpiece and ground. Here, the
possible screw of a reaction wrench must be an element of a 2-system of screws, viz.
the possible reaction wrench must be a force on a line parallel to and in the same
plane as the lines §; and $,.° This system of wrenches is accordingly defined as the
“wrenches of constraint” that comstrain the motion of the gripper/workpiece
relative to ground, and the ray coordinates Wy of such a wrench are obtained via
the linear combination

W = A Wy + Ag Wy, (1.37)
where W, and W, are ray coordinates of $; and §,,

The gripper/workpiece has four degrees-of-freedom, and it can be considered
to be initially motionless relative to ground. An error wrench due to the difference
between the desired wrench and the actual wrench is nulled by a small corrective
twist of the end link relative to ground, the axial coordinates of which, De, can be
obtained from (1.36). This is because this corrective twist cannot move the
gripper/workpiece, since the corresponding wrench that is induced to null the error

in the iRCC is fully supported as a wrench of constraint between the

‘gripper/workpiece and ground.

Because the desired and actual wrenches of constraint can be written as

linear combinations (1.37), it is clear that the error wrench can also be written as a
linear combination,

We = py Wy + pg Wo, (1.38)

where We=W,—Wg are ray coordinates of the error wrench. It can be concluded

from (1.36) and (1.38) that the corrective twist must also be an element of a 2-

6The fact that the points of contact can only take compression is neglected.
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system, and this system is defined as the “twists of compliance”. Then, the axial
coordinates D of the corrective twist are obtained from the linear combination
D¢ = g D} + oy D3, ‘ (1.39)
where 15’{ and f); are axial coordinates of ${ and $§, which are the screws that
correspond under the mapping of stiffness with the lines of force §; and 3. (See
Figure 1.7.) The axial coordinates of the the two twists of compliance can
therefore be obtained by the relations,
D% = [Ko) ™! W, and D} = [Ko] ™! W, (1.40)
From (1.1), it follows that the two screws $I and $§ are not reciprocal to the
SCTews $1 and $2, which span the wrenches of constraint, and from (1.6),
(Df)7 %, # 0and (D3)F Wy # O. (1.41)
Thus, it is clear that the screws spanning the twists of compliance are not elements
of the 4-system of screws which is reciprocal to the wrenches of constraint. Four
screws that are each reciprocal to the two lines which span the wrenches of
constraint do in fact quantify the twists of freedom of the gripper/workpiece
relative to ground. These twists of freedom constitute all allowable twists that are
consistent with the environment, and Figure 1.7 illustrates four such screws of zero
pitch, namely the lines of rotation 85, 34, $z, and §g.  Assigning the axial
coordinates ]ji’ i=3, 6, to these four twists and introducing them into the axial-ray
coordinate form of reciprocity yields
D,T %, =0 and D;T Wy =0, (1.42)
- for i=3, 6.
The twists of freedom are thus linearly independent from the twists of
compliance. In fact, the two systems are 'orthogonal complements with respect to

[Ko]. This can be shown by firstly considering that the axial coordinates ﬁb of a
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given twist of freedom of the gripper/workpiece relative to ground can be expressed
by the linear combination,
Dy =71 D3 + 79 Dy + 73 D5 + 74 Dg. (1.43)
From (1.37), (1.42), and (1.43), it can be deduced that any twist of freedom is
reciprocal to any wrench of constraint and that it can be expressed by
D} W =0, (1.44)
where W=(#r=We) are the ray coordinates of any wrench of constraint. Now, for
each wrench of constraint, there is a unique twist of compliance, i. e.'v'v=[K2] De,
and therefore substituting into (1.44) yields
D} [Ko] Dc = 0. (1.45)
This expresses the condition of orthogonality between twists of freedom and twists
of compliance with respect to the potential-energy-based inner product, and from
(1.7),
(D, D) = Df [Ky] D¢ = 0. (1.46)
Therefore, in a direct sum of orthogonal complements [B]® [C]=R6, where the
matrix labels are used to denote the vector subspaces. The consequence of this
direct sum is that a general D € RS can be written is a unique combination of a
f)b € [B] and a D¢ € [C], so that f)-'—-f)b+f)c.

It is important to realize that the twists of freedom and the wrenches of
constraint are determined solely by the nature of the contact between the
gripper/workpiece and ground. The twists of compliance are, however, dependent
on the mapping of stiffness of the robot, shown here to be represented by [Kz],
together with the wrenches of constraint. It is important to further recognize that
the screws $; and $§ are not dependent on tﬁe choice of origin, and that these same

two screws will always be obtained given a properly represented mapping of
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stiffness. The sole requirement of this mapping of stiffness is that it be positive-
definite. A center-of-compliance is not necessary, and a compliant coupling (such
as the iRCC) need not be positioned and oriented in some special way to perform a
given partially constrained task.

Figure 1.7 essentially illustrates a virtual robot manipulator consisting of six
serially connected screws, $"1‘, $§, 33, $4, 3z, and §g. This virtual robot operates in-
pa.ra,llél with the actual robot that controls the 6 d.o.f. displacement of the end
link. In order to better visualize the decomposition, it is useful to consider that
when the six virtual joints displace, the axial coordinates of the resultant twists
producing (37, $5) and (83, 84, 85, 3¢) are respectively, D¢ and f)b. Finally, it can
be concluded by superposition that these two twists, which together produce a
general twist of the end link, provide a means to control the reaction wrench
between the gripper/workpiece and ground, while simultaneously controlling the
displacement of the gripper/workpiece relative to ground. This novel control

strategy is defined as “Kinestatic Control.”



CHAPTER 2
IMPLEMENTING KINESTATIC CONTROL:
USING DISPLACEMENTS TO NULL FORCES

2.1 Introduction

Which way does a robot move itself in order to null the external contact
forces that act on its gripper? In general, the contact forces that interact between
the gripper and its environment are not nulled or even altered when the robot
moves the partially constrained gripper in the unrestricted direction of a remaining
freedom. Consequently, the efforts here are to document the invesﬁgations and
implementations of other robot motions that though restricted do correctly null (or
change) these contact forces.
| While addressing this question, this work establishes the property of robot
stiffness to be the key and central issue. Robot stiffness is after all a property that
is independent of the task required of the gripper. Succinctly, the robot is
considered here to be a spatially deflecting spring that connects two rigid bodies
together, viz. the gripper to ground.

In the previous chapter, the author analyzed the geometrical properties of
spatial stiffness and presented two analytical representations, one that defined a
positive-definite, potential-energy-based inner product and another that established
the properties of spatial stiffness which are invariant for Euclidean motions. (See
Chapter 1.) This work further used the positive-definite inner product to facilitate
a decomposition of the vector space of all twists!. A robotic example was given

1“Twist” is used here as a generic word to denote the infinitesimal

displacement /rotation of one rigid body relative to another, while “wrench” is a
similar generic word for the forces/torques that interact between two rigid bodies.

31
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where a gripper (with workpiece) was in straight line contact with its environment,
resulting uniquely in two degrees-of-constraint {characterized by the wrenches of
constraint) and four degrees-of-freedom (characterized by the twists of freedom).
Using the positive-definite inner product, an orthogonal complementary twist space
was reasoned to exist. This complementary twist space was defined as the “twists
of compliance,” and each twist contained therein possessed a working relationship
with its own unique wrench of constraint. Accordingly, the twists of compliance are
the restricted (non-allowable) twists that are reserved for nulling and/or correcting

the contact forces which interact between the gripper and its environment.

2.1.1 The Non-Euclidean Geometry of Stiffness

While analyzing the geometrical properties of the inner product defined by
spatial stiffness, it was concluded that it must be non-Euclidean, because it is
positive-definite and operates on twist coordinates.? (See Section 1.2.) The use of
a positive-definite (non-Euclidean) inner product is clearly a necessity in the
general case for determining a twist space that is an orthogonal complement to the
twists of freedom (or a wrench space that is an orthogonal complement to the

wrenches of constraint).

*Suppose [K] to be a positive-definite 6x6 symmetric stiffness matrix. Then,
the only twists that satisfy the quadratic form D7T[K] ]5:0 are imaginary,

where six not-all-zero homogeneous twist coordinates are given by D=[xT; 6¢T]T.
In other words, for a non-degenerate coupling, there is no real twist about which no
work 'is done. (Au nner product that operates on homogeneous coordinates is
considered to be non-Euclidean, specifically elliptic (Lipkin and Duffy [1985]) or
virtual (Sommerville {1929]), when only imaginary elements satisfy the vanishing of
its quadratic form. As far as a Euclidean inner product is concerned,
mathematicians have demonstrated that one which operates on homogeneous
coordinates is either positive semi-definite or indefinite. See (Semple and
Kneebone {1979] and Porteous [1981].)
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The degree of freedom afforded to a gripper (its twists of freedom) is a
purely geometrical notion, as well as its degree of comstraint (its wrenches of
constraint). In other words, the freedoms and conmstraints of the gripper are
determinable through pure Euclidean geometry.  Therefore, it cannot be
meaningful to establish a non-Euclidean (positive-definite) inner product based
solely upon the nature of the freedoms and constraints acting between the gripper
and its environment. In certain instances, using a “selection matrix” introduces a
fallacy, as does defining a point where a “compliant frame” is to be located and
subsequently used to perform decomposition. (See Duffy [1990].) The result of
such an operation vyields an orthogonal complemeniary twist space that is not
necessarily the best twist space for nulling errors in the contact forces which
interact between the gripper and its environment. In other words, it will not vield

the correct twists of compliance.

2.1.2 An Example

To further investigate this important statement, consider the planar two-
dimensional example illustrated in Figure 2.1. A wheel is connected to a platform
via two translational springs, which are capable of compression as well as tension.
The platform is then subsequently connected to ground via two actuated prismatic
(slider) joints that are tuned for fine-position control. The wheel is to maintain
contact with a rigid environment. The center point of the wheel thus has a single
freedom, which is a displacement p; in the direction of G;. Based on the constraint
imposed upon the wheel, a normal contact force, fn acting through the center

point along Gy, may interact between the wheel and the environment.
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It will be shown that the control of fp along Up and p, along 1, is
accomplished by judicious choices of slider displacements éd; and 6ds, which
together combine to move the platform in some direction. Intuitively, one may at
the outset consider that the best motion for nulling errors in the force fn would be
a displacement of the platform in the dp direction, i. e. parallel to the normal
force. However, this is not the case, and in general, the best displacement is in
some other direction, ¢, which is canted to §, at an angle not equal to 90°". The
best displacement is one that changes the force error in a desired way without
affecting the control of the wheel’s displacement in the U, direction. For example,
displacing the platform in the @ direction would not move an at-rest wheel, but it
would change the normal force.

For this simple example, a positive-definite Euciidean inner product
mandates tha.tr a displacement along p = cos(fp) i +sin(9n)3r is Euclidean-
orthogonal to a displacement along &, = cos(d,) {.+sin(9t) j. However, these
vectors are elements of a Euclidean vector space, which uses two non-homogeneous -
coordinates to locate co? elements.? (See Ryan [1989].) Even though there exists a
purely geometrical positive-definite inner product here in this simple case, it is not
the best one with which to perform twist decomposition.

It is proposed here that stiffness can be used to define a proper inner
product with which to obtain the best fp-error-nulling direction: the twist of

" compliance, ¢ = cos(f) 1 +sin(8c) - In other words, for coordinates

3A Euclidean vector space does not possess the power of locating infinite
elements with finite coordinates. Once a rotational coordinate is incorporated with
the two translational ones (general planar rigid body motion), then a rotation
about a point at infinity vields a pure translation, and accordingly, three finite
homogeneous coordinates are used to describe general planar motion. Because the
resulting homogeneous twist coordinates would no longer belong to a Euclidean
vector space, a positive-definite inner product acting on them must be non-

Euclidean. (See the previous footnote.)
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Etz[gfjggg] and ic=[§?§ég§;],. af [K] dc =0, where the 2x2 matrix (K] 1is
symmetric, and its three elements have the dimension F/L. This matrix quantifies
the stiffness of the mechanism consisting of a wheel connected to ground by two
translational springs, a platform, and two actuated sliders. (It does not quantify its
task, which is the surface to be tracked by the wheel). It is assumed that the
actuated sliders are stiff (they are tuned for fine-position control), and since they
act in series with the more compliant translational springs, their compliances can
be neglected, and the stiffness of the overall mechanism is thus solely due to the
translational springs.

In order to obtain a mechanism stiffness mapping relating the small
displacement of the wheel relative to the platform with the incremental change in

external force acting on the wheel, it is necessary to express the force,

f=fels+ fy i, that the wheel applies to the springs:

Fx_l e e || (i)
- ko (I =1 o) 21)

fy s sy ko (g ~log)
where ¢; = cos(f;) and s; =sin(f;), and where k; and (I, —1 ;) are respectively the
positive non-zero spring constant and difference between the current and free
lengths of the jth spring. When the wheel is in quasi-static equilibrium, then fis

the force that the the environment applies to the wheel plus any other externally

applied forces (gravity, for instance).

Consider now that the two springs do not deviate too far from their free

lengths. Then, from (2.1), for a small deviation,

Sfx _|a e kq 6l 99
{6fy:l [31 39 }[kzﬁiz} (22)
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where 6fx and éfy are deviations away from fx and fy and where &l is a

deviation of the itR spring away from its current length. Substituting into the

right-hand side of (2.2) the inverse kinematic transformation,

611 e s bz
[5’2]{% Sz][‘s?f } &9

(obtained from a projection) establishes the stiffness relationship,

6fx | _ bz
] m | 2

where 6z and 6y are deviations of the center position of the wheel away from its

current position measured relative to the platform, and where the stiffness matrix

e ek 0|l s
(K] —]: $1 S }{0 k2 “i cg Sy :l (2:3)

Consider a numerical example of §; =45’, 85 = 90°, and ky = k9 = 10 kg/cm.

[K] is given by

Then, from (2.5), the stiffness matrix assumes the form, [K] ={ g 155"] kg/cm.
Now it remains to vary the task required of the wheel in order to demonstrate the
concepts here that are new and of interest. (They are easily extendible to higher
dimensions. Section 2.2 illustrates the extension to planar three-dimensional and
spatial six-dimensional cases.)

Prior to analyzing the specific task illustrated in Figure 2.1, consider first

that the wheel center point is fully constrained. This means that any force,
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f=fy i+ fy j, acting through the center point may be applied to the wheel by
the environment. It is clear that any small displacement of the platform due to
slider displacements 6d; and dds, 6d = 4d, i + édy j, will cause via stiffness a

small change in this force. Specifically, the change will be

6fx | | 5 5 || 8d | .
{m}' { 5. 15 Madz } (26)

The negative sign accounts for the kinematic inversion of specifying the
displacement of the platform relative to the wheel. In other words, [ggﬂ = —[gz ]

Conversely consider that certain desired changes in fx and fy are known
and are denoted by éfyx and 6fy. The proper direction, 55(: =éd i-.+5d62 i, to
move the platform to accomplish this change can be obtained by inverting the

spring matrix in (2.6), which yields

-] ] e
c2 y
Equation (2.7) can be used to control a time-varying general force, f= fxi+ fy i,
that interacts between the fully constrained wheel and its environment. At each
instant, a force error is given, and (2.7) specifies the proper force-er;or-reducing
displacement 5&0

Consider now that the wheel is at rest but is loaded with an excessive
normal force. (See Figure 2.1.) By application of (2.7), this force can be reduced
in a desired way without moving the wheel as long as the change i=n. force, [{%ﬂ, 18
supported by the lone constraint imposed by the environment. Therefore, based on

the figure, Sfx| = 6fn 0.707 , where §fp is the desired change in the normal
Sf 0.707
y .
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force, fn. Substituting into (2.7) yields the correct direction (with a magnitude) to
move the platform: [gg%]: $fn [— 0.14104%00m/ kg} This demonstrates that for
this example a displacen:ent of the platform in the negative z direction (positive
§fn) reduces the compressive normal force that acts on the wheel at an angle of
45°. (The force fy is referenced negative for compi'ession, and therefore, a positive
§fp reduces an excessively compressive force.) Because the wheel does not move

when the platform displaces in this direction, this is inherently the best direction

for correcting a normal force error, and consequently, it is the twist of compliance,
de.

The control of the normal force has been accomplished without displacing
the wheel. It is important to recognize this since now, by superposition, a desired
allowable displacement of the wheel,

§d, = 6dyy T +6dyo § = 8py(—0.707 1 +0.707 ),
can be accomplished by simply adding it to the force-error correcting disﬁlacement,
6d.. (Because &Tt is an allowable displacement, adding it to 6&6 does not affect
the control of normal force.) Therefore, the following small slider displacements

can be computed to control the normal force and the tangential displacement

simultaneously:

5d ~0.707 _
1 |- G5 [ 0.1414 cm/kg]‘ ‘
{ 5d, ] G 6pt[ 0.707 } *+Ge d/n 0.0 (28)

In (2.8), G; and G are dimensionless scalar gains, and 6p; and éfp are errors in
wheel pusition and normal force. Successive applications of (2.8) based on updated
errors in 6p, and & fp provides the means for controlling both the tangential wheel

position and the normal force.
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9.1.3 The Justification for Stiffness to be the Inner Product

The desired control algorithm has thus been formulated. A highlight of the
example demonstrates precisely where the theory depends upon geometry and
precisely where it is enhanced by the non-geometrical physical properties of the
spring stiffnesses, k;. This establishes that stiffness can be used to define a
physically meaningful inner product with which to perform twist decomposition.

The constraint force, fp, does no work, as it acts in the direction iy canted
at an angle #, to the horizontal. The condition that the constraint force does no
work may be written:

(64 8) (fa T) =0, (2.9
where ép, denotes a small displacement of the wheel in an allowable direction, u.
As the wheel moves to accommodate the no-work condition (2.9), the center point
of the wheel is restricted to a displacement ép, in the direction d;. Therefore, from
(2.9), G is perpendicular to dp (i & =0). Consequently, 8 — 6y = £90°. (See
Figure 2.1.) ,

While this reaffirms the statement that the relationship between constraint
and freedom is one of geometry, it often also conjures up the erroneous notion that
an inner product for displacements has been established. The condition that the
virtual work of a constraint force must vanish has been introduced solely for the
purpose of obtaining the unrestricted freedom based on the constraint. (In Section
2.2, it becomes ever more apparent that (2.9) is not an inmer product for
displacements, and that in general, it is not an inner product at all, but rather, for
example, a condition that a point lies on a line.)

With the lone freedom established, it remains to determine the necessary

complementary normal-force-correcting displacement. Via stiffness, displacements
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are related to forces via a one-to-one mapping. Therefore, for
- [cos(fy)]

6fndn=0fn _sin}ﬂn}d

there exists the one correcting displacement,

. [cos(8,)]
dpc dc = bpc :?12593

ey

=

and this relationship can be written, §fy Uy = [K] épc fc. Substituting into (2.9)
and dividing by the non-zero magnitudes ép, and ép yields that the directions ,

and 1 are “{K]-orthogonal”:

T . | cos(6y) ) cos(fc) | _ o=y
Ut [K] &c —Lin(et)] [K] [sin(ﬁc)J_ (O, Gc ) =0. (2.10)

Since the normal force must do work on a displacement in the @ direction, T
cannot be perpendicular to Tp. Therefore, it is not possible for d¢ to be equal to
i, and consequently, U must be independent of ;. Equation (2.10) provides an
orthogonal decomposition that allows for any displacement to be written as a linear
combination of @} and @¢. (For example, iy = Ay + Aglc.)

For the example illustrated in Figure 2.1, §; = 135" which from (2.10) yields
that . = 180°. It is interesting to examine how 0 varies as the task of the wheel
varies, viz. Op and 8, vary. Figure 2.2 illustrates fc as a function of #y, for the
same mechanism with task-independent stiffness {K] =[ g 15'.] kg/cm.

This solution for the twists of compliance (the best directions to move to
null force errors) is by no means intuitive. The author submits the reason for this

to be the non-Euclidean properties of stiffness.? Simply considering all of the

4Variations in k, and ke cause 6. to vary, even when all (other) geometry is
held fixed. This clearly illustrates that the solution of 8¢ is not fully dependent on
eometry, which is another way of saying that the positive-definite inner product
2.10) is non-Euclidean. The example given in Chapter 1 also explained that the
complementary twists of compliance vary as the non-geometrical stiffness
properties vary, even though the robot, gripper, workpiece, and environment are
not moved.
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available motions of the wheel does not immediately produce the correct force-
error-nulling displacement direction. In order to make the solution intuitive, the
engineer must incorporate into the thought process the appropriate mechanism
properties, which at the very minimum must include its stiffness properties. In
other words, “if I move the platform in this direction that is dependent on stiffness
and the cbnstra.int, then there will be no displacement of the at-rest wheel.”

While it has been recognized here that the use of a positive-definite (and
hence, a non-Euclidean) inner product is necessary, it only remains to justify the
use of a chosen non-Fuclidean inmer product. Clearly, a more thorough
examination includes properties affecting the dynamic (higher frequency)
characteristics of the mechanism. Griffis [1988] investigated the use of a positive-
definite inner product defined by the kinetic energy of a rigid body. From a
practical point of view, however, a meaningful algorithm to control force and
displacement does not result from it.

The author considers that most robots do not accelerate significantly and do
not respond to inputs of higher frequency. (The position control Iéop for the robot
used in this work had a 1 Hz. bandwidth, and for example, the robot responded to
only 20% of a 2 Hz. sinusoidal input.) Therefore, it must be clear that the force vs.
displacement (and wrench vs. twist) relations la.re inherently dominated by
mechanism stiffness. Consequently, it has been the thrust of this work to examine
the stiffness properties of the robot, and to use its knowledge to simultaneously
regulate the force and the displacement of its end-effector. (Section 2.3 describes in
detail the initial implementation of #kis theory, beginning with an empirical
determination ‘of robot stiffness and ending with proof-of-principle control

examples.)
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2.1.4 Relation to Previous Work

In general, force/position control laws given in the literature depend upon
the synthesis of matrices of control gains that effectively create commands of
actuator torque (or force) increments.® Figure 2.3 illustrates a general force/torque
control loop. The author considers that this figure adapts itself in some form or
fashion to all force control loops cited in the literature. For this loop, it remains to
synthesize the control matrices [Kg and [Kp]. The vast majority of the literature
on this subject supports, I believe erroneously, that the matrix [Kf] is the designer’s
or programmer’s choice and often relegates its synthesis to being dependent on
robot task (for instance, making [K diagonal for the U; and dp directions in
Figure 2.1). When robot stiffness is ignored, the author considers that the task-
dependent synthesis of [K] (and [Kp]) is necessary for these control laws to work,
so that compatible force-error and position-error corrections can be combined.

Excellent, insightful, and thorough investigations of one-dimensional force
control have been given in the literature, e. g. An et al. [1988], Chapter 8. Haefner,
et al. [1986] effected two-dimensional force comtrol by employing a pair of one-
dimensional controllers acting in-parallel (which does not offer much geometrical
insight). The extension of Haefner, et al. is valid, but the extension of many other
one-dimensional applications to multi-dimensional ones has not been a natural one.
It is common place for one to read that a robot is desired to have a “stiffness ‘ky’
in the ‘x’ direction.” To coerce the close-loop robot system to exhibit this tag;k-

dependent characteristic clearly requires the task-dependent synthesis of [Kf] and

5See Whitney %987] for a survey of other force/position control laws, such as
Hybrid Control (Raibert and Craig [1981]), Stiffness Control (Salisbury {1980],
Kazerooni, et al. [1986]) and Impedance Control (Hogan [1985]). This survey is an
excellent overview, and therefore, the control laws need not be repeated here. As
far as torque control is concerned, see An, et al. {1988], which documented
experimentation on a unique prototype direct drive serial robot that was
specifically designed to facilitate the control of joint torques.
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Nomenclature

W; — desired wrench
Wq — actual wrench of constraint

} constraints (W, € [a])
W — wrench error

D, - twist of compliance (wrench-error correction)

D. — desired twist of freedom .

Wt . freedoms (Dy, € [B])
Dy, — actual twist of freedom

[Kg] — wrench gain matrix

D — general command twist to robot

6% — actuator displacement

b1 — actuator torque increment

[Kp] — actuator gain matrix

[J] — kinematic Jacobian relating 6¢ to I

[Robot System] — robot actuators, permanently attached compliant
devices and sensors, reacting against a rigid environment.

Figure 2.3
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[Kpl, as well as possibly others. Some researchers deem the synthesis of the 36
elements in each of these 6x6 matrices necessary due to the robot system
complexity, but it seems that this widespread synthesis itself introduces a
complexity which is an order of magnitude greater than it needs to be, especially in
a research lab where a graduate student likes to see the effects of initially
implementing one scalar proportional gain, even if it is to control a six-dimensional
system. ‘

Kinestatic Control establishes [Kp] and [Kf] whenever the back-drivable
effects are minimal (shown with a dotted line in Figure 2.3), i. e., wrenches acting
on the gripper do not affect the response of the actuators. For this case, the matrix
[Kp] represents itself as no more than fine-position control gains, which are easily
synthesized for a given robot while it is unconstrained. While the commands to the
actuators are displacement-based, the matrix [K] must map a forée/ torque
(wrench) error into a displacement/orientation (twist) correction, and
consequently, [KJ] is a scalar times the inverse of stiffness (compliance).

Under the provisions of Kinestatic Control, general six-dimensional
simultaneous regulation of both force and position is accomplished via the synthesis
and subsequent actions of only two single dimensionless scalar gains: one for force
(wrench of constraint) and onme for position (twist of freedom). (This is a
generalization of (2.8).) The force gain essentially magnifies how far to move the
end-effector along a wrench-corrective twist of compliance, while the position gain
magnifies how far to twist along a desired twist of freedom. Consequently, this

control methodology depends on the knowledge of the open-loop stiffness of the

robot, which enables the actual control law to be simple yet responsive.
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2.2 Twist Space Decomposition

2.2.1 Planar Twists

Figure 2.4 illustrates a planar three revolute (3R) serial robot with a
compliant device connecting its gripper to its end-effector (platform). The
workpiece held fixed in the gripper touches the rigid environment in a single point,
P. At the instant in this example, the environment has imposed one constraint on
the gripper, which leaves it with two freedoms. In fact, a constraint force may be
generated to act on the gripper along the line $5. (The point contact is considered
to be a bi-lateral constraint here in the discussion, even though it is really a uni-
lateral one at the times of contact and withdrawal.)

The revolute joints of the robot are actuated (&bl, 619, and 61[)3) and
considered to be tuned for fine-position control so that the robot is non-back-
drivable while servoing. The compliant device considered here is a parallel
mechanism consisting of three extendible legs whose displacements are restricted
via translational springs of known stiffnesses. The compliance of the stiff robot is
neglected, and the stiffness of the robot system connecting gripper to ground is
defined by the stiffness of the compliant device.

For this planar example, force coordinates are initially defined, so that they
can be used to determine the forces that the gripper applies to the springs.
Obtaining a variational form of this is followed in turn with the definition of twist
coordinates for the plane. This section continues by developing the mapping of
stiffness for the compliant device (and hence, the robot system). It is shown that
this mapping of stiffness relates a general point (of rotation) with a uznique line (of
force). This is finally used to obtain a twist of compliance that is necessary to

complement the two freedoms of the gripper to effect kinestatic control.
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Figure 2.4
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Lines of forces in the plane may be located with three homogeneous
coordinates that are normalized, $=[c, s; r|T, where ¢ and s are direction cosines
and r the signed perpendicular distance of the line from the origin. A scalar
multiple, f, of these coordinates varies the force acting along the line, and this can
be represented by the three homogeneous coordinates w=f §=[fx, fy; mo)*. The
force acting along a gemeral line can be decomposed into a force acting along a
parallel line through the origin together with a couple. The coordinates
[fx Fys 0]T denote a force acting through the origin, while the coordinates
[0, 0; mo)T denote a couple (an infinitesimal force on the line at infinity whose
homogeneous coordinates are [0, 0; 1]T). Adding the two sets of coordinates
together reproduces the coordinates of the force.

The homogeneous coordinates [fy, fy; mg]T of the force that the gripper

applies to the springs can be written in the matrix form,

fx cp cg ey ||k (=1o1)
fy- = 31 82 83 kz (12 -_— 102) y (2.11)
Mo 0 0 2:3 33 k3 (13 - 103)

where the columns of the matrix contain the normalized homogeneous line
coordinates (8, 89, and §3) of the lines (1, 2, and 3) of the three extensible legs
shown in the figure, and where k; (I, -1 .) is the leg force due to the extension of
the ith spring. All coordinates are referenced to the coordinate system located on
the platform at the intersection of the first two legs (hence the moment entries for
those legs are zero). A variational form of (2.11) can be written as

dfx c; ¢ cg kq 01y

Sfy | =1 81 9 33 ko 8ly |, _ (2.12)
5mo 0 0 33 53 k3 613
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provided the legs do not deviate too far from their unloaded positions. Equation
(2.12) can be e:;pressed in the compact form:

= [, (213)
where % = [§fy, §fy; §mo]|T, where [j] replaces the 3x3 matrix of normalized line
coordinates, and where [k] is a 3x3 diagonal matrix of positive non-zero spring
stiffnesses. The three elements of 6/ are the small displacements of the legs, which
are referenced positive for extension.

Prior to defining an inverse kinematic transformation so that its
incorporation into (2.13) will define the overall stiffness mapping, it is necessary to
first define twist coordinates. A twist is a rotation about any point in the plane of
motion.® It can also be thought of as a pure translation, together with a rotation
about the origin. The twist coordinates [§z, 6y; 0]T denote the pure translation,
while the coordinates [0, 0; 6¢]T denote the rotation about the origin. Adding these
two sets of coordinates together produce the homogeneous coordinates of the
general planar twist. These coordinates can also be written in the forms,

D= (52, by; 68T = (66 y, =66 7 69]T=68[ y,— 2 T =645,  (2.14)
where z, y are the Cartesian coordinates of the point of rotation.

The three coordinates § = [y, —z; 1]T are essentially a form of homogeneous
point coordinates that are normalized. The twist coordinates D=6¢§ are
accordingly a form of homogeneous point coordinates, the point being that about
which one body rotates d¢ relative to another. As such, a point that is infinitely
distant, such as one with homogeneous coordinates [c, s; 0]T for instance, defines a

pure translation.

81t is really a rotation about a line normal to the plane of motion, but for
brevity, the point of intersection of this line and the plane is used in discussion.
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While defining an inverse kinematic transformation for the compliant
device, consider that the gripper twists relative to the platform. In general, this is
a rotation of an amount §¢ about the point whose Cartesian coordinates are z, y.
Then, it is straightforward to express, for example, the signed perpendicular
distance, dg, between the point of rotation and the line of action of the third leg
spring force as

dy =83 §= cay — S32 + T3S, (2.15)
where § = [y, —z: 1]T are the normalized homogeneous coordinates of the point of
rotation. While considering only those points of the gripper that instantaneously
lie on the line of the third leg, one sees that, as they move tangent to their
respective concentric circles, they all share the same component (é¢ dg) directed
along the line. This component consequently defines the displacement of the third
spring, and therefore, I = é¢ d5. Multiplying (2.15) by é¢ and substituting (2.14)
yields §lg = §§ D. Repeating for the other two legs yields the inverse kinematic
solution for the compliant device:

§1=1[3]T D. | (2.16)
Substituting into (2.13) yields the overall mapping of stiffness, which is expressed
here in the form,

w = [K] D, (2.17)
where [K] = [i][%;](i]™.

The stiffness mapping [K] now represents a linear geometric transformation
that relates points with lines (specifically, a projective correlation). Equation
(2.17) clearly shows that for a fixed [K], there is a one-to-one correspondence

between a point of rotation and a line of force: the point of rotation being that

point in the platform about which the gripper turns an amount é¢ and the line of
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force being that line along which a small force éf acts to change the nominal force
which the environment applies to the gripper. For the mechanism in Figure 2.4,
the stiffness matrix [K] is considered known. (It is determined by [j] and [k;].)

The columns of [K] are scalar multiples of the coordinates of the forces
necessary to cause twists respectively corresponding to a translation in the x-
direction, a tranmslation in the y-direction, and a rotation about the origin.
Considering the columns further as scalar multiplies of line coordinates, one sees
that the intersection of the first two columns defines a unique point through which
a force must act to cause a translation of the gripper relative to the platform. (If a
force does not act through that point, then the gripper must rotate é¢ about some
point in the platform.)

Prior to analyzing the specific task illustrated in Figure 2.4, consider first
that the gripper is fully constrained relative to ground (bolted down, for example).
This means that any nominal force whose coordinates are Wo = [fx, fy; mg)T is
applied to the gripper by ground at a given instant with the robot in a stationary
configuration.  Clearly, any twist of the platform relative to ground (with
coordinates f)c) will effect a change in this nominal force, and analytically, this can
be expressed in the form,

w = —[K] D, (2.18)
where a sign change has been installed in (2.17) because of the kinematic inversion

of now specifying the twist of the platform relative to the grounded gripper.

Because of (2.18), the force acting on the gripper changes to
Wo+ W =[fx+6fx §y+5fy§ mo + 6mg] .

Alternatively, suppose that the desired change W is known, then D¢ is computed by
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inverting (2.18):

De=—-[K] ~w. (2.19)
Equation (2.19) can be used to comtrol a time-varying general force
Wo = [fx, fy: mo] ", that interacts between the fully constrained gripper and its
environment, because it specifies at each instant the best force-error-nulling point
C about which to rotate the platform an amount é4.
It is interesting to comsider the columns of [K] -1 using superposition.
They represent themselves as scalar multiples of the coordinates of twists that are
necessary to change a nominal force by adding to it respectively a force along the
x-axis, a force along the y-axis, and the couple normal to the plane. Considering
the columns further as scalar multiples of point coordinates, one sees that the last
column locates the only point for which a twist of the gripper relative to the
platform generates a couple. (A twist of the gripper relative to the platform about
any other point generates a force acting along some line.) ‘
| Returning to the task at hand, namely that illustrated in Figure 2.4, it is
clear that we must interest ourselves in specifically what point is related via (2.17)
with the line of action $, of the constraint force. For it is about this point that the
platform of the compliant device should rotate in order to null (or control) the
constraint force. In other words, the point C that is sought is the twist of
compliance, and from (2.19), its homogeneous coordinates are
De= —[K] ! wa, (2.20)
where W, = fa [€a, Sa; Ta]T are homogeneous coordinates of a force on the line §;.
Figure 2.4 illustrates C, the precise location” of which is only known after

establishing [k;] and the geometry, 1. e. [K] of the compliant device.

"The twist of compliance will usually not be the intuitive pure translation of
the platform in the direction of the line §,. This would put point C at infinity to
the left, which is only valid when (2.20) yields the homogeneous coordinates
D¢ = [ca, 8a; 0]7 - '
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A rotation of the platform about point C cannot move the gripper, because
the force, or change in force, applied to it is fully supported along 3. In other
words, from (2.17),

Wy = —|K] De. (2.21)
Here, point C represents the best point to use to control force, because its use does
not affect the control of the displacement of the workpiece (under ideal situations,
e. g. no friction and a good stiffness model). A rotation of the platform about any
other point does cause or affect the motion of the gripper. To visualize this,
consider that because of 63, 619, and $1q, the platform rotates relative to ground
about a general point G. This twist decomposes itself into an unrestricted rotation
of the gripper about point B together with a rotation about C, which causes a
change in the contact force acting along §,. (Analytiéally, f)g e ]jb +De.
Synthetically, the line $g containing G and C intersects §, in precisely point B.) It
is the platform that twists ﬁg relative to ground, while the gripper twists
f)b = f)g — D, relative to ground. ‘

Imagining point G to place itself anywhere in the plane furthers the concept
of decomposition of twist. Moving G, and hence $g, moves the point of intersection
of §y and $,, causing B to slide up and down §,. That B lies on §, is in fact the
condition that it is a twist of freedom. In other words, the linear restriction (or
single constraint) on coordinates Db is the vanishing of the virtual work of a
constraint force:

By Woa = 82y, fx + bty fy +86y mo=0, (2.22)
where Wy, are coordinates of a nominal wrench acting on the gripper along $,.

While it is clear that (2.22) is the point equation of the line $,, it should also be

clear that it is valid for any scalar force acting along it. Supposing the magnitude
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to be small, Woa = Wj, then substituting (2.21) into the left-hand side of (2.22) and
multiplying throughout by a minus sign gives the [K]-orthogonal relationship
between the twist of compliance and the twist of freedom, |
Dy [K] De={ Dy, D ) =0, (2.23)
which, after dividing throughout by non-zero rotation angles, 6¢b and 6, states
clearly that the two points B and C are [K]-orthogonal:
8¢ [Kl8c=(8,, 8¢ )=0. (2.24)
The concept of twist decomposition is extended by considering point B to be
an element of the linear span of two points P and Q that lie on $,. In other words,
analytically, the twist coordinates of B can be written as the linear combination,
Dy =8¢y, S, = 8¢p Sp +6dq Sq, (2.25)
where ép and Sq are normalized coordinates of P and Q. Substituting (2.25) into
(2.23) yields that, for general rotations é¢p and é¢q, both points P and Q are [K]-
orthogonal to C. It can be said then that P and Q define a system of points, whose
[K]-orthogonal complement is C. | |
Because C is the [K]-orthogonal complement of P and Q and because it
shares a working relationship with a constraint force acting along $,, it cannot lie
on $,. This fulfills the concept of twist decomposition, since now the twist
coordinates Ijg of a general point G may be written,

Dg = 6¢g Sg =86y Sp +86q Sq + 6¢c Se, (2.26)
where the three linearly independent points P, Q, and C are used to span all points
in the plane and represent all possible motions of the platform. Via the [K]-
orthogonal decomposition, the general platform twist is decomposed into a gripper
twist (f)b =5¢p §p+6¢q Sq) and a constraint-force-error twist correction

(D¢ = 6¢¢ S¢), and this is illustrated in Figure 2.4 with the line $g.
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Kinestatic Control of the mechanism in Figure 2.4 is accomplished by an
extension of Equation (2.8). It follows that the control law may take one of the
following forms:

Dg =Gy, D, +Gc D,
ﬁgme f)b—Gc [K]—1 Wa, OF

ﬁg = Gy, (6¢p Sp +8¢q éq) —Gc8fa K]~ !, (2.27)
where [K] depends on the robot, Sp, Sq, and 3, on its task, and where Gy and G
are dimensionless gains for position and force errors. The scalars &;SP and &;Sq are
errors in the rotations of the gripper about points P and Q, while the scalar 6 f a; is
an error in the constraint force. Comparing (2.27) with Figure 2.3 shows that
K= ~Ge K}~ L (See Hennessey [1986] for an alternative planar algorithm
that controls the displacement of the gripper in addition to the compliance levels of
an iRCC which is attached to a PUMA robot.)

Clearly, there are other ways of constraining the gripper of Figufe 2.4,
whether by just moving $, or by changing the kind of constraint altogether. An
example of a different kind of constraint sees the incorporation of another point of
contact and, hence, a second normal line of contact, §;. (See Figure 2.5.) This
example leaves the gripper with a single freedom relative to ground, which is a
rotation about the point of intersection (B) of the two lines §; and 3,.
Complementing this single twist of freedom must now be a pair of points (C; and
Cy) denoting the twists of compliance. The pair corresponds (via [K]} ﬁith the
lines $5 and $;. The pair of points C; and ‘Cz themselves define another line,
whose co of points share a one-to-one correspondence with the oo of limes that pass
through B. It is this one-to-one relationship defined by [K] that is used to control

the constraint force passing through B. In summary, similar to (2.26), the
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coordinates of the general twist may be written as a linear combination of the

normalized coordinates of the points B, C;, and Co.

2.2.2 Spatial Twists

The purpose of this section is to establish twist decomposition for spatial

applications involving a robot with six independent actuators. This is

accomplished by

i) defining twists and wrenches for six-dimensional spatial applications,
ii) recognizing a task-independent mapping of stiffness [K] for the robot,
iii) investigating the task-dependent freedoms and constraints of the
gripper relative to ground, which defines the twists of freedom and the
wrenches of constraints,

iv) determining the twists of compliance from the wrenches of
constraints (via the inverse of [K]), and

v) establishing that the twists of compliance and the twists of freedom

are [K]-orthogonal complements.

In the spatial case, a twist is a rotation about a general unique line together
with a translation in the same direction. It can also be thought of as a rotation
about a line through the origin together with a general translation. Its
homogeneous coordinates in either case are given by D=[6%3; 6¢7T)T, where 6%, is
an infinitesimal displacement, and 6:; is an infinitesimal rotation. (These

coordinates are more conveniently expressed as D = [6%,; 65], where the transposes

are understood.) Its normalized coordinates, on the other hand, are given by
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§ = [§3; §T]T( = [So; §]), where Igl=1. The magnitude 8¢ of a twist is that scalar
which scales all six normalized coordinates S to reproduce the homogeneous
coordinates D of the twist (D = ¢ S).

Exactly three kinds of twists exist. One body may move relative to another
by a general twist, which is a rotation about a line together with a translation in
the same direction. Analytically, this case is true when 6:?0-6(; # 0, where the
pitch of the twist is given by A =55, A pure rotation is the case whenever
5f0~5$ =0 and " 6$ M #0. Finally, a pure translation is the case whenever
né‘; !|= 0, for which twist coordinates may not be normalized (because ||5]=0).
Accordingly, twist coordinates for translations are normalized differently,
§ = [§; 0], where now|| 55| = 1.

Similarly in the spatial case, a wrench is a force acting along a general
unique line together with a couple iﬁ the same direction. It can also be thought of
as a force acting along a line through the origin together with a general couple. Its
homogeneous coordinates in either case are given by W = [f T. g7, where f is the
force and i, is the moment. (This can also be more conveniently expressed as
w = [f; ], where the transposes are understood.) Its normalized coordinates, on
the other hand, are given by § = [§7; §Z]T( = [§; §o)), where| 5| = 1. The wrench
magnitude, f, is that scalar which scales all six normalized coordinates § to
reproduce the coordinates of the wrench W (W = f 8). A wrench increment (or a
small change in a wrench) is defined by a wrench of small magnitude, e. g. 6f,
which means W = [6F; 6rfi,).

Exactly three kinds of wrenches exist. The resultant of the forces that one
body applies to another may be a general wrench, which is a force acting along a

line together with a couple in the same direction. Analytically, this case is true
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when £ - Mg # 0, where the pitch of the wrench is given by h =§-8,. A force is the
case Whénever f ‘Mg =0 and H f H# 0. Finally, a couple is the case whenever
|fl=0, for which wrench coordinates may not be normalized (because |§l=0).
Accordingly, wrench coordinates for couples are normalized differently, § = [6, Sols
where now || 5,| = 1.

With twists and wrenches established for spatial applications, coansider now
that the spatial stiffness of the robot is known and that it provides a task-
independent relationship between twist and wrench,

Ww = [K] D, (2.28)
where the magnitude of W is small, and where now [K] is a 6x6 positive-definite
matrix denoting the spatial spring. Equation (2.28) relates the twist of the gripper
(relative to the base of the spatial spring) to the change in wrench that the
environment applies to the gripper. Equation (2.28) is considered to be a natural
extension of (2.4) and (2.17). (See Chapter 1 and Equation (1.4).)

Natural six-dimensional extensions of (2.9) and (2.22) provide the means to
establish the general relationship between freedoms and constraints existing
between a gripper and its environment:

DT Wo = 6%y - fa + 80} - Hioa = 0, (2.29)
where f)b = [0% ; 6§b]'r are coordinates of a twist of freedom and where
W, = [[a; Mioa)T are coordinates of a comstraint wrench. Now, (2.22) is
geometrically an incidence relation, specifying that a point lies on a line or a line
contains a point. By analogy, (2.29) specifies, for example, that a line of a rotation
must intersect a line of a force. In general, (2.29) states that a constraint’wrench
does no work. Clearly, (2.29) is valid regardless of the magnitude of the constraint

wrench, and it may be finite (f) or incremental (4 f).
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It is important to recognize that the sum of the number of freedoms and the

number of constraints for the gripper relative to ground is six in a spatial

application. (It may be recalled that this sum was two for the example in Figure
2.1 and three for the examples in Figures 2.4 and 2.5.) This means that when, for
instance, four independent constraints are active, then two freedoms remain. In
such a case, four sets of normalized coordinates §;, i = 1,...,4, are used to denote the
wrenches of constraints, while two sets of normalized coordinates Sj’ j=1,2, are

used to denote the twists of freedom. All linear combinations of these two bases in

- conjunction with (2.29) mandate that SJT 8; =0, for any i taken with either j. This

essentially establishes vector spaces for both the twists of freedom and the
wrenches of constraint.

Recognizing that via (2.28) there exists for every wrench of constra.iﬁt a
unique twist essentially proves the existence of the twists of compliance. This can
be expressed as

wa = [K] Do, (2-30)
which to a sign change is an extension of (2.21). Because [K] has been specified as

positive definite, which mandates that the constraint wrench with coordinates W,

share a working relationship with the twist having coordinates D¢, it can be

categorically stated that such a twist is a non-freedom. Consequently, the twists of
compliance vector space, whose normalized coordinates éi’ i=1,..4, are obtained
via an inverse mapping of (2.28),

A S =K "1s, (2.31)
for i = 1,...,4, where A; is a scalar having dimensions L/F. (Refer to the exzmple
in Figure 2.1 where 1/6fy [ggc%} = [" 0.1414 cm/ kg].) Linear combinations of the
six linearly independent sets ;:f twist coordinates, éj’ j=1, 2 and gi’ i=1, .., 4,

span the coordinates of all twists.
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Substituting (2.30) into (2.29) yields the [K]-orthogonal relationship between
a twist of freedom and a twist of compliance. Succinctly, an extension of (2.10)
and (2.23) is
BE (K] De = ( Dy, De ) =0, (2.32)
which is valid for all D, taken with any ]':)b. Note that twists of freedom are on the
left, while twists of compliance are on the right. This bookkeeping allows for
asymmetric [K]s and is necessary for the gemeral case of Kinestatic Control.
Reconsider {2.30), where it was desired to obtain the twist of compliance (D¢) that
was the only restricted twist capable of properly changing a given wrench of
constraint (W,). Obtaining D¢ from (2.30) is not contingent on (K] being symmetric
but rather only on its symmetric part ([K] + [K]T)/2 being positive-definite. (That
no real twist of freedom can be self [K]-orthogonal, viz. ljg (K] ﬁb = 0, ensures that
no intersection exists between the two twist systems.) Examples thus far have
been limited to symmetric stiffness matrices. In the next section, the theory is

implemented employing a real empirically determined stiffness matrix that is not

symmetric.

2.3 Implementing Kinestatic Control

This section documents the six-dimensional implementation of this theory
on a robot system comprising a modified General Electric P60 robot, two 386PC
computers, three Creonics® motion controller cards, a Lord ATI Corp. model 15/50
'force/torque sensor, and a homemade un-instrumented compliant device. (See
Figure 2.6.) Essq@;%ially, one of the computers (ROBOT) was employed to control
the fine-position displacement of the robot, while the other {KINESTATIC) was

employed to generate the twist commands of the end-effector platform.

8Creonics Inc., Lebanon, NH, and Lord ATI Corp., Inc, Raleigh, NC.
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Figure 2.6
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(Communications between the two asynchronously operating PCs was over
Ethernet and consisted of a end-effector platform twist command sent one way and
an actual position and orientation of the end-effector sent the othér.) The end
result of this assemblage of hardware and software provided a convenient test bed
upon which to verify the theory.

A liberal amount of compliance was introduced into the end-effector of the
robot by the compliant device.g_ Figure 2.6 illustrates this and the force/torque
sensor that constitutes the last link of the robot. The arrangement — robot-
force/torque sensor-compliant device-gripper —is  essentially a six-dimensional
experimental extension of the slider actuato_rs-plgtform-springs-wheel arrangement
shown in Figure 2.1 and the robot-platform-compliant device-gripper arrangement
shown in Figure 2.4. Therefore, with the force/torque sensor constituting the
“platform” that was connected to ground by six non-back-drivable actuators, it
remained to twist it relative to ground (with six degrees-of-freedom) in order to
simultaneously control the constraint wrenches and twist freedoms of the gripper.
For the implementation, the “gripper” was a three inch long bar of aluminum

square stock, drilled and tapped. (See Figure 2.6 which shows the gripper bolted to

a large immovable table.)

2.3.1 Empirical Determination of [K]

Prior to simultaneously controlling force and displacement, it was necessary
to first measure the mapping of stiffness for the robot, which established the

relationship given by (2.28). This was done while the robot was in the

9Other researchers have installed compliance into their end-effectors:
Whitney [1982], parts assembling aid, experimentally verified; Roberts, et al.
1985], fast responding one degree-of-freedom, experimentally verified; Xu and Paul
1988, for reasons of stability; Goswami, et al. [1990], programmable, task-
dependent stiffness and damping,.
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conﬁgtiration shown in Figure 2.6, where the gripper was bolted to the table.
During the measurement the force/torque sensor was used to record the data on
the forces/torques (wrenches) applied to the end-effector by the table. The six
actuator encoders were used, and their sum total effect was representative of the
twist of the force/torque sensor relative to ground, and hence of the grounded
gripper relative to the force/torque sensor. From (2.28), it was clear that a
minimum of six of these twists were necessary to measure [K}, provided they were
independent. Because the compliance of the servoing robot was considered very
low compared to that of the compliant device connected in series, the deflections of
the robot were not measured during the determination of [K|. The four factors

that were considered to have influenced the measurement of robot stiffness are

given by the following:

i) force/torque sensor (wrench measurement) resolution,
ii) encoder (twist measurement) resolution,

iii) linearity, and

iv) robot configuration.

Not only was the resclution in the individual coordinates considered, (fx for
instance was 0.02 kg, and mgyx was 0.02 kg-cm), but it was also necessary to
consider the resolution in obtaining direction and location information from the
measured wrench and twist coordinates. Therefore, one must displace the robot
(command it to move) significantly enough to obtain a measurable (and more
accurate) D, viz. it is necessary to accurately locate the twist together with its
direction, pitch, and magnitude. This commanded twist must provide, through a
reasonable amount of compliance, an accurate measure of wrench increment (W),

viz. an accurate determination of its location, direction, pitch, and magnitude.
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It is important to note that the robot was not given too large a displacement
(twist) for which the matrix [K] would lose its linearity. Such a set of six
independent large twists taken together with their corresponding six wrench
increments would yield a matrix [K] that would not map correctly a linear
combination of the original six twists.

In order to convince the investigator that the compliance of the robot was
negligible, the robot configuration was changed, and measurements for [K] were
repeated. A stiffness matrix [K| for each of two different robot configurations is
presented here.

Initially, a Remote Center-of-Compliance (Lord ATI Corp. RCC) device was
installed. However, this device was too stiff for axial displacements and cocking
rotations.’® In other words, because the force/torque sensor tended to saturate, the
robot could not be displaced far enough in these directions to obtain an accurate
and repeatable measure of D. A second effort resulted in a spatial spring that was
far too compliant, which meant that sufficient forces/torques could not be applied
to the spring. A third and final assemblage (three compression springs each
clamped at both ends) is shown in Figure 2.6. This yielded the repeatable and

manageable stiffness matrix:

r—3.140 -0.168 -0.344 -1.051 34.898 -0.083
0.197 3.439 0.052 -31.914 -0.783 0.057
-0.295 0.366 11.194 5.049 -1.159 -0.093
K= -1.381 -28.511 -2.082 394.018 -5.979 2.235
25.660 -1.342 -2.008 2.243 377.047 5.944

0.959 0.087 0.073 -8.484 8.37T 76.698 N

19The RCC was not designed for force control, but rather it was designed to
avoid it.
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The upper-left 3x3 has units of kg/cm, the lower-right 3x3 has units of kg-cm, and
the other two 3x3s have units of kg. It should be noted that [K] is asymmetric and
that its symmetric part ([K] + [K]T)/2 is positive-definite.

The coordinate system used to express [K] was located at the center of the
force/torque sensor. The z-axis was coaxial with the sixth joint of the robot, and
the z-axis defined the reference for the last joint of the robot. (This coordinate
system is referenced by the label F.) This choice of representation proved to be the
most convenient, but another one could have just as well been used to establish a
different representation, [K'], where [K'} = [E|T[K|[E], and the 6x6 matrix [E]
represents the transformation of twist coordinates. (In other words, the samé twist
needs a pair of twist coordinates D and D, one set for each coordinate system.
Then, D = [E] D'.)

While the gripper was grounded and the compliant device was. in an
unloaded configuration, the matrix [K| was measured by sequentially moving the
six individual actuators of the robot, and recording the changes in the forces and
torques {wrench increment) applied to the end-effector. In other words, the six
independent twists chosen were the individual actuator displacements themselves.
(This choice ensured the directions and locations of the respective twists, while at
the same time it enabled easy monitoring of twist magnitude.) Twists were
referenced so to describe the gripper’s motion relative to the platform (force/torque

sensor). The following steps were taken to find [K] in terms of F:

i} While holding the last five actuators fixed, the first actuator was

moved 133 encoder edges, which corresponded to 0.25° degrees of the first
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joint. The twist and wrench increment were expressed in terms of F and
recorded. The actuator was then returned to its original location, and
the same command was given again. This process was performed ten
times. The sum of the twist data was stored in f)l, and the sum of the
wrench da.ta.‘ was stored in W;.

1) Step (i) was repeated for joints 2 through 6 in turn, and this
generated the twist data ﬁi and wrench data Wi, (i=2, .., 6). The

following summarizes the displacements commanded to the actuators:

Actuator Command Corresponding Joint Command
1 133 4X encoder edges 0.25°

2 230 0.25

3 139 _ 0.15

4 277 0.5

5 185 0.5

6 150 0.5

iii) The wrench data, Wy, oo Wg Was assemnbled as columns in a 6x6
matrix [W], and the twist data, f)l, - ]56 was likewise assembled as the
columns of a 6x6 matrix [D]. From (2.28), these matrices are related
[W] = [K] [D], and therefore [K] was determined by inverting [D].

iv) In order to check for linearity, twists that were not wsed to
determine [K] were commanded, and the actual measgred wrench
increments were compared to those computed using [K]. The twists

commanded were in fact the six cardinal twists of F. The end-effector
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(force/torque sensor) was successively given small displacements in the
z, ¥, and z directions, and then successive small rotations about the z, y,
and 2z axes. These twists effected six wrench increments that
corresponded respectively to scalar multiples of the six columns of [K].
v) In order to investigate the dependence of robot configuration on [K],
the last joint was rotated 90°, and steps (i) — (iii) were repeated.

This represented a significant change in the robot configuration as
seen from the force/ toréue sensor and spatial spring, since the first five
joints all moved relative to them. A stiffness matrix that was measured

in the second robot configuration was
3.708 -0.175 -0.282 -0.653 28.950 0.000
0.094 3.167 -0.190 -35.810 3.678 -0.129
K] -0.310 -0.095 11.298 -2.568 4.686 -0.001
K= )
-1.841 -26.456 -0.373 385.484 -2.320 8.246

30.373 -1.016 -0.751 -2.486 352.869 9.167

0.791 0.181 0.046 -0.949 13.464 76.315 N

where the units are the same as before.

Finally, the following quantifies the repeatability of (K] (in terms of its 3x3
sub-matrices) by listing the average differences between all empirically determined
[K]s. The first measure quantifies repeatability for [K]s measured while the robot
remained iz one of the two configurations. The second measure quantifies
repeatability for [K]s measured while the robot was in either of .the two

configurations.
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3x3 Sub-Matrix!! First Measure Second Measure
upper-left 1% ‘ 8%
lower-left 1% 8%
upper-right 5% 13%
lower-right 4% ™%

2.3.2 Implementation of 6 DOC Wrench Control

Six degree-of-constraint wrench control was implemented on the
experimental apparatus illustrated in Figure 2.6. A desired wrench was
commanded to the KINESTATIC computer, which generated a corrective twist
(De = [6%oc; 556]) based on the control law,

D= -GK " w, (2.33)
where W = [fx, fy» fzi mx, my, my)T expressed in F is the difference between the
desired and actual wrenches. (The scalar gain G was 0.03.) Equation (2.33) was
performed approximately every 100 milliseconds, and each time it generated a new
twist command.

Before commanding D¢, it was necessary to first transform it into
D = [6%,; 5:;], where

8% = [Rq] 6%oc and 66 = [R4] 84, (2.34)
and where [Rs] is a 3x3 rotation matrix. The columns of [Rg] are the direction
cosines of the coordinate axes of F expressed in terms of a coordinate system G.

The origins of F and G are the same, but the coordinate axes of G are parallel to

UThe values given for the upper-left 3x3 matrix are valid for elements in the
3—12 kg/cm range. The values given for the lower-left and upper-right 3x3
matrices are valid for elements with a magnitude in the 25 — 40 kg range, and the
values given for the lower-right 3x3 matrix are valid for elements in the 75 — 400

kg-cm range.
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those of the grounded system located at the shoulder of the GE Robot. (The
coordinate system at the shoulder of the robot is labeled as R.)

The result of (2.34) was communicated to the ROBOT computer, which
controlled the position and orientation of the end-effector (force/torque sensor).
The ROBOT computer performed its reverse and forward displacement kinematics
every éO milliseconds, and each time it communicated the results of the forward
displacement analysis to the KINESTATIC computer. Figure 2.7 illustrates the
response to a step imput of W, = [0, —1 kg, 4 kg; 3 kg-cm, 2 kg-cm, 1 kg-cm|T,
given in terms of F.

It is interesting to examine the response shown in Figure 2.7. This was a
typical response — the largest errors being in my and my. This is because these
coordinates measured torques in the z and y directions that, taken together with
their corresponding twists, constituted the stiffest twist-wrench combinations.
(The coordinates of these twists are respectively the fourth and fifth columns of
[K]~ 1) Consequently, small errors in these twists were magnified as shown in
Figure 2.7.

The investigator realized that placing bounds on these coordinates was
necessary. For instance, -8 kg-cm<my<8kg-cin, —-2kg<fy<2kg, and
—5kg<f;< 5kg. This was necessary because the [K| measured in Section 2.3.1
and used in (2.33) was no longer accurate when the compliant device was under
loads outside of these bounds. (These bounds also affected where a controlled force

could be located. For example, a 1 kg force in the z-direction could not be

accurately controlled if it had more than an 8 cm moment about the z-axis.)
A further examination of Figure 2.7 indicates that the lags were the same

for all coordinates. (This was typical in the response plots of other, different



{s) swtjy (8) SwTl (8) |swTt |

O OE 02 OT O or OE O02 0OF O Oy OE ©O2 OF O
AN 1 M 1 2 1 1 O-Vll I 3 i 2 i L 1 1 Ho.w\.l I | N i 1 1 N o.v.l
o 2 o 2- 02—

i

i\.o.o : 0°'o r0° 0

b
o2 “ 02 Lo 2

;
CMAR 0"t -0 "t

(m2-8%) zw (wo-8%) A L (Wo-By) xpy L

(2] —
= () ewil (8) oawtl (s) swtl

or OE O02 0T o Or OE O2 OF O oy O0E O2 OF O
1 S NI YR T S R N %D.NIL P EEPRE N BRI 1 P
ﬁo.al TRl T
0'0 — A Lo.o
bo-1 Loy
mo.m 02
0" € O E
T.v L0 b
(%) =4 0" 5 (31) A5 05 (1) x4 0" G




73

wrench step changes.) It is important to recognize this, because this proves the

principle that ‘at each instant the wrench error is nulled by the best corrective

twist. In other words, the wrench error coordinates are nulled at the same pace.

2.3.3 Implementation of 5DOC/1DOF Kinestatic Control

Five degree-of-constraint/one degree-of-freedom kinestatic control was
implemented on the experimental apparatus illustrated in Figme 2.8. The gripper
was bolted to a slider {prismatic) joint that was in turn bolted to the level table.
Relative to the slider, the gripper was positioned and oriented in a general way.

The twist of freedom of the gripper was ﬁb =[-1,0,0;0, 0, 0]%, which was
a translation in the negative z-direction of G. (It was also a translation in the
negative z-direction of R, the grounded coordinate system located at the shoulder of
the robot). The positioxi of the slider was p, where 0<p<8 cm.

Because of the bounds placed on controllable wrenches (See Section 2.3.2.),
judicious ch(')ices had to be made regarding which wrenches of constraint to control.
Three (m;, my, and mq) of the five constraints were torques whose directions were
those specified by the coordinate axes of F. The other two constraints (f 1 and fo)
were forces along respectively the y and 2 axes of G. A desired wrench of
constraint was conveniently expressed in terms of F by

W, = [a] £, (2.35)
where the columns of the 6x5 matrix [a] were the coordinates (in terms of ) of the
five constraint wrenches, and where f: =|f 1 fo ™y, Mo, m3]T.

While the five columns of [a] #Efe the coordinates of the wrenches of
constraints expressed in terms of F, it was necessary to declare a sixth wrench that
was independent of the wrenches of constraint. This was because the force/torque

sensor reported a general wrench (Wg in terms of F), and it was necessary to filter it
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into an actual wrench of constraint (W in terms of F). Accordingly, a sixth
wrench was declared whose coordinates constituted first column of the 6x6 matrix
[m], and

[Rg]™  [0g]
m= ° | (2.36)

[05] (1]
where the last five columns correspond to the five columns of [a]. The 3x3 sub-
matrix [Rgq] was defined in (2.34), [04] is a 3x3 zero matrix, and [l4] is a 3x3
identity matrix. The filtering of the sensed wrench was then accomplished by the

relation,

Wo = [mifm] ~1 W, (2.37)
where [i] is a 6x6 identity matrix whose first element is replaced by a zero, and
where [m] ~! = [m]T. There were no working wrenches (the friction of the slider
was considered minimal), and the assumption was made that the actual wrench of
constraint (W) was insensitive to which sixth wrench was chosen to be the first
column of [m]. In other words, the first element of [m]T Wg is small.

A desired set of five constraints (f;, f9, m;, My, and m4) together with a
desired position (p) of the slider was commanded to the KINESTATI? computer,
which generated a corrective twist (D = [6%o; 64]) based on the control law:

| D =Gy6p Dy +Gy Do, (2.38)
where D, is the coordinates of the twist of compliance expressed in G, where §p is
an error in slider position, and where the twist and wrzsch gains are G; and G,
The coordinates D} of the twist of compliance expressed in F was calculated from

Blh= —(K] " (% — o), (2.39)

where W, is from (2.35) and W, is from (2.37). The coordinates DL were




76

transformed into D¢ by (2.34) where Dy is replaced by D/ and where D is replaced
by Dc. Equation (2.38) was calculated approximately every 100 milliseconds, and
the result was communicated to the ROBOT computer.

Representative response plots of this system are given in Figures 2.9 —11.
Figure 2.9 illustrates the nulling of a wrench of constraint for initially loaded
gripper. It is important to recognize that for this experiment, the twist gain was
set to zero, Gy =0. (Gg=0.03.) This further illustrates that the twist of
compliance used to null the wrench of constraint error was the best twist, since it
did not move the slider significantly while nulling a wrench of constraint. (Figure
2.9 shows constraint response curves with the same type of lagging that was present
in the 6 DOC wrench control, and also, it shows that the displacement of the slider
was only minimal with some drift.)

Figure 2.10 illustrates the response of the system that was given a
displacement command p=35 cm, and a constraint command, f;=fy=
my = mg =mg = 0.0. The system accomplished the move in 40 seconds, and the
constraint forces and torques were suppressed throughout the move. (G, = 0.008)

Figure 2.11 illustrates the response of the system that was initially given a
step command of p = 4.0, fl =0., fo= —1 kg, m; =4 kg-cm, mg = — 5 kg-cm,
mg =2 kg-cm. Midway through the response, the displacement command was
changed to p="7.0 cm. The constraint response curves continued to exhibit lags
that were similar, which is indicative of the fact that the correct twist of

compliance was commanded at every instant.
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CHAPTER 3
GLOBAL STIFFNESS MODELING
OF A CLASS OF SIMPLE COMPLIANT COUPLINGS

Stiffness is a geometric mapping, one that transforms a differential
displacement (twist) into an incremental change in force (wrench). In order to
analyze stiffness, one must first define two rigid bodies and a compliant coupling
that connects them. Thus, by the mapping of stiffness, a differential displacement
(twist) of one body relative to the other is transformed into an incremental change
in the force (wrench) that one body applies to the other through the coupling.

The word “global” is introduced here to denote that the mapping of stiffness
changes and that it is a function of the configuration of the compliant coupling.
Therefore, a global stiffness model defines the correct mapping of stiffness for a
compliant coupling even when it is displaced far from an unloaded configuration.
This new concept in modeling supersedes a previously accepted and widely
accepted modeling technique that requires a compliant coupling to remain near an
unloaded configuration. (Such a restriction was specified ir Chapter 1.) The work
of Dimentberg [1965] remains the standard for the stiffness modeling of a compliant
c‘oupling that stays near its unloaded configuration. His model results in a
mapping of stiffness that is represented by a constant and symmetric stiffness
matrix.

In this chapter, the exact position-and-orientation-dependent stiffness
mapping is derived for a simple compliant coupling that is made up of a number of

translational springs acting in-parallel. A “simple compliant coupling” is defined in

80
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the general case as a frictionless and massless mechanism having prismatic joints
restricted by translational springs and revolute joints restricted by torsional
springs. Such a coupling should be configured with other unrestricted joints so that
when all of the springs are removed from their joints, the coupling transmits no
forces or torques between the two bodies which it connects. (Three examples are
given in this chapter.)

The word “simple” is used to denote that the stiffness mapping of such a
coupling is readily obtained from simple geometrical constructions and simple
scalar deflection relations (for example, é§ f = k éz, which relates the change of force
6f in a translational spring with stiffness k¥ to a spring displacement éz). The
compliant couplings given in Figures 1.1, 1.2, 2.1, and 2.4 are considered simple,
but on the other hand, the coupling used in the implementation (See Figure 2.6) is

considered general.

The impetus for these investigations evolved from the recurrence of
asymmetries in experimentally determined stiffness matrices. While Chapter 1
introduced the concept of replacing a general coupling with a 3-3 Stewart Platform
(simple compliant coupling) model, it also restricted itself to symmetric mappings.
In that chapter, the disclaimer was made that the coupling (as well as its model)
should remain virtually near an unloaded configuration, and this implies a
symmetric stiffness mapping. However, when stiffness mappings of real couplings
were obtained by direct measurement (See Chapter 2.), they were asymmetric. (In
Chapter 2, the spatial spring of the experimental apparatus was nearly unloaded,
and [K] was experimentally determined to be asymmetric in many entries.)

These asymmetries require the theory of Kinestatic Control (See Chapter 1.)

to use asymmetric stiffness matrices. Chapter 1 established the theme of this



82

dissertation: “A knowledge of the mapping of spatial stiffness is an essential
ingredient in establishing the control of both the force and the displacement of a
partially constrained rigid body.” That the mapping is asymmetric does not in any
way detract from the proposed theory, and the work detailed here is meant to
extend it. Noteworthy a.chiewfements presented in this chapter include what is
believed to be the clearest and simplest possible expressions for the global
stiffnesses of three simple compliant couplings as well as a clear indication of how

and where such mappings lose their symmetry.

3.1 Planar Two-Dimensional Spring

Figure 3.1 illustrates two translational springs' acting in-parallel, one
grounded at pivot point A and the other grounded at pivot point B. The other
ends of the two springs are connected and pivoted at point P, which is located with
Cartesian coordinates z and y. The two springs taken together as a single unit
define a planar two-dimensional spring. The spring is two-dimensional because two
independent forces act in its translational springs, and it is planar since the forces
remain in a plane.

An external force f = fx i+ fy j is applied to the tw&-dimensional spring at
P. The external force is in static equilibrium with the forces acting in the springs,
and this system remains in static equilibrium as the point P displaces. To
accommodate this, the external force changes as point P moves. It is now desired

to find the mapping of stiffness,

1Either of the springs can be thought of as acting in the prismatic joint of a
revolute-prismatic-revolute serial chain. Two such serial chains act in-parallel to
define the simple compliant coupling shown in Figure 3.1.



83

Figure 3.1
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Sfy | | %1 koo || %
where 6f = § fx i+6 fyj‘ is a small increment in { that is related via kij to the
small displacement éd = éz i + éy j of point P. Based on the locations of points A,
B, and P, the lengths /; and /5 and angles 6, and §, can be computed. The spring
constants &y and kg and free lengths / ; and [, are considered known.
In order to obtain (3.1), it is necessary first to express the finite forces that

are applied to the springs by the external force:

Fx e e f|R (=l (3.2)
fy 1 g ||k (lp—log)
where ¢; = cos(f;) and s; =sin(f;), and where k; and (I, —{_;) are respectively the

positive non-zero spring constant and the difference between the current and free

lengths of the ith spring. A complete differential of (3.2) gives

{&‘x} =[ ¢ o J[kl 511}{ — s —SZM k) (1 -1 1) 86 J 33
6fy 3p 89 || kg by e oo ko (Ig—1,9) 665
where 6 fx and éfy are deviations away from fy and fy, where éli 1s a deviation of
the itB spring extending from its current length, and where 66, is a deviation of f..
The dimensionless parameters p; =1,/ly and pg=1 o/ 12. are now
introduced, whose respective deviations from unity give indications of how far the
two-dimensional spring is away from an unloaded configusgiion. The scalar p; is
h

positive; when p; <1, the ith spring is extended, and when p; > 1, the it spring is

compressed. Substituting p; into (3.3) yields



85

In order to determine (3.1), it is necessary to make substitutions of §z and

by for éI; and I; 66,. (Such a substitution ensures a compatible set of the four

differentials, é/; and l.66., i =1, 2.) Prior to the substitution, (3.4) is rearranged

sfx| [ep e |[ ] 0 6y

Sfy | | 51 so || O kg || bl

—sp =y |[B (1=pp) O Iy 86, is
{ o e [ 0 ky(1—py) || 1y 66, | (3:5)

which facilitates the substitutions that are necessary.

into the form,

Figure 3.2 illustrates how the connection point may displace 6d. This is
projected onto two normalized directions for the first spring, which are the
direction of the spring (§] = ¢, ;+sl j) and the direction of its derivative with
respect to 6y (65)= -3 ;-{—cl j). The results of these projections yield
respectively the desired translations: 8!y and [y 6§;. Repeating for the second

spring and incorporating the overall results into (3.5) provides the desired (3.1)

kg || er e | kB 0 dler s
| kg1 koo 51 S || 0 Ry || o o

€] o 0 kg (1=pg) [| =39 ¢

where




36

Figure 3.2
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Equation (3.1) may be more compactly written in the form,
8f = [K] &d, (3.7)
where from (3.6),

K] = 0] [k 617 + 18] (&2 — o) L6017 (38)
where [j] is the formal instantaneous static Jacobian relating the differential change
in the scalar spring forces to 6f, where [6j] is its derivative with respect to 8, and
89, and where [k] and [k;(1—p;)] are the 2x2 diagonal matrices. (When
py = pg =1, the (3.8) spring matrix [K] reduces to the Chapter 2 [K]|, which was
determined for the wheel-spring-platform arrangement in the unloaded
configuration.)

It is useful to make the following observations on the 2x2 spring matrix [K]

defined by (3.8):

i) The matrix [K] is the sum of two symmetric matrices and therefore is
always symmetric.

ii) In general, the matrix [K] is not positive-definite. It is positive
definite whenever the springs are both extended (p; <1, i=1, 2).
Otherwise, it may be indefinite.

iii) The three independent elements of [K] are specified by ten
parameters. (Three points, two spring constants, and two free lengths.)
Therefore, an co! of two-dimensional springs have the same [K].

iv) For an unloaded two-dimensional spring, (K| = {j] [¥;] [i]T, since
p; =1 in (3.8). Because [K] is, in gemeral, the sum of two matrices of
this form (See (3.8).), the initially loaded two-dimensional spring shown

in Figure 3.1 is equivalent to a pair of unloaded two-dimensional springs
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acting in-parallel, one having the stiffness matrix [j] [k;] [j]* and the
other having the stiffness matrix [6]] [£;(1 — p;)] [6j]F. Figure 3.3 shows
such a pair of unloaded two-dimensional springs acting in-parallel — four
translational springs with constaats ky, ko, k;(1 — pq), and ko(1 -~ po)-

v) The matrix [K] may be non-singular even though [j] is singular.
(Consider the example illustrated in Figure 3.4.)

vi) The matrix [K] may be singular when [j] is non-singular. (Consider
the example illustrated in Figure 3.5 with either &) +k9(1 —pg) =0 or
k2 +k1(1 —P]_) =0.)

vii) The matrix [K] may be negative-definite. (Consider Figure 3.5 with

both ky + k9(1 — po)<0 and kg + k(1 — p1)<0.)

3.2 Planar Three-Dimensional Spring

Figure 3.6 illustrates a moveable platform connected to ground by three
translational springs’? acting in-parallel. The three springs taken together as a
single unit define a planar three-dimensional spring. The spring is three-
dimensional since three independent forces act in its translational springs, and it is
planar because these forces remain in the same plane.

A resultant external force f with coordinates W, = [fx, fy: mo]™ acts on the
moveable platform along line $,. The external force is in static equilibrium with
the three spring forces, and the system remains in static equilibrium as the
moveable platform rotates é¢ about point R. To accommodate this, the external
force cha.hges as the movea.bie platform moves, and its change is defined as a force

increment. (The force increment §f has coordinates W = [§fx, éfy; émy]T and acts

*Each of the springs can be thought of as acting in the prismatic joint of a
revolute-prismatic-revolute serial chain. Three such serial chains act in-parallel to
define the simple compliant coupling shown in Figure 3.6.
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Figure 3.3



90

kg(l - P2)

kl(l "Pl)

Figure 3.4
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kl(l - PI)

Figure 3.5
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Figure 3.6
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along a line $.) The coordinates of a force are scalar multiples of normalized line
coordinates: f § where f is the magnitude of the force (6 f for a force increment),
and where coordinates § = [c, s; r|T are normalized coordinates of the line of the
force (¢ and s are the direction cosines of the line, and r is the signed perpendicular
distance of the line from the origin). |

The moveable platform is located by the Cartesian coordinates zp and yp of
point P together with an orientation angle ¢. A differential rotation é¢ of the
moveable platform about point R is represented with twist coordinates,

D = [bz, by; 64]F = [66 y, —6¢ z; 6¢)T= 68y, —z; 1]T =64 S,  [(2.14)]
where z, y are the Cartesian coordinates of the instant center R, and where
" coordinates $ are defined as the normalized coordinates of point R. (The
coordinates S can also be thought of as the coordinates of the line perpendicular to
the plane of motion at point R, and accordingly, the platform can be thought to

rotate 8¢ about this line.)

It is instructive to consider that the two twist coordinates éz and éy also
specify the displacement of a point in the moveable platform which is coincident
with the origin. Consider that such a point displaces

6&0=5w;+6yf =6pyi—b¢ :tj-.
For completeness, also consider that point P displaces
§dp = (62— 86 yp) I +(8y + 8¢ ap) | = 8y —yp) T - 66(z —2p) j.  (3.9)

Now, given that the moveable platform rotates é¢ about point R, it is

required to determine the stiffness mapping,

bmo k3y k3g k33 || ¢
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where W = [6fy, & fys dmg)T denotes the change in resultant force that is related
' via kij to the changes D = [6z, 6y; 6¢]T. Based on Tp, Yp, and ¢ and the locations
of the fixed pivots, the lengths 11, 12, and 13 and angles 91, 92, and 93 can be
calculated. The spring constants ky, k9, and kg and free lengths [ ;, [ 5, and | 03
are considered known.

The mapping of stiffness (3.10) is global. The simple compliant coupling of
Figure 3.6 is not restricted to being near an unloaded. configuration as it was in
Section 2.2.1. (The platform of Séction 2.2.1 is replaced here by ground, while the
gripper is replaced by the moveable platform.) Nevertheless, (3.10) represents the
same kind of mapping as did {2.17), i. e. one which relates a point R of rotation to
a line § of an increment of force.

In order to determine the mapping of stiffness (3.10), it is necessary to first

express the finite forces that the resultant W, applies to the springs:

fx cg e c3 |{kp{li-lp)
fy = 31 .52 33 kz (12 - 102) ) (3.11)
Mg 7'1 7'2 1'3 : k3 (13 - 103)

where the columns of the 3x3 matrix contain the normalized homogeneous line
coordinates (8;, 85, and 84) of the lines ($;, $5, and §3) of the three extensible legs
shown in Figure 3.6, and where k; (I, —1 ) is the leg force due to the extension of
the ith spring. For the line coordinates r;, i =1, 2, and 3,

=T 8 — Y G (3.12)
where s; = sin(#,), ¢; = cos(f;), iu;d where z; and y, are the Cartesian coordinates of
the fixed pivot point of the ith spring. For Figure 3.6, all z; and y; are constants,

and 7y = 75 and y; = ys.
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A complete differential of (3.11) is an extension of (3.3) that assumes the

form,
6fx Cl C2 63 kl 511
6m0 1"1 7'2 7'3 k3 613

where in the 3x3 differential matrix, for i =1, 2, and 3,
While the itP column of the first 3x3 matrix in (3.13) corresponds to the

b spring, it is of the utmost

normalized line coordinates & of the line §; of the it
importa.ﬁce to consider the i*® column of the second 3x3 differential matrix as the
normalized line coordinates 6§i of the line 6$i’ which is the derivative of $i with
respect to ;. See Figure 3.7, which clearly shows that 68, is perpendicular to §;
and that both pass through the first fixed pivot point. (639 and 684 are also
perpendicular to 35 and 5 respectively, and they also pass through their respective
fixed pivot points.) Therefore, an increment of 66 fromlﬁi gives the 8, + 66, line
h

spring line:

5,(0, +86,) = 5,(6,) + 85,(6;) 56, | - (3.13)

coordinates of the it

in the limit as 59i-» 0.



53,

684
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Figure 3.7
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Making the substitutions of p; =1 ;/l: into (3.13) and rearranging yields

p— _—

6fx Cl C2 C3 kl O 0 511

ofy | =| 51 sg 83 0 &k O 6ly | +
_5mo 1"1 7'2 T'3 O 0 k3 Jb 613
N ar

which could be considered a more general form of (3.5). It remains to replace the
displacements 6l and I, 66, by éz, by, and é¢. (Such a substitution ensures a
compatible set of the six differentials, él; and I; 66,,1=1, 2, and 3.)

Prior to this substitution, consider first that points in the moveable platform
that lie on a given line must displace relative to ground so that their components
along the line are the same (in other words, the requirement of moveable platform
being a rigid body). This component is §¢ d, where d is the signed perpendicular
distance of the line from point R of rotation. Analogous to (2.15), the
perpendicular distance is given by

d=§T8§=cy—sz+r, (3.17)
where 8 = [¢, s; r]T are the normalized coordinates of the line. Multiplying (3.17)
by §¢ and substituting (2.14) yields

§¢ d=35T 66 5=5T D, (3.18)
and accordingly, all points that lie on the line with coordinates § will displace with
a component 8¢ d along that line. (The expression §T D also yields the correct
displacement component whenever D describes a pure translation, e. g.

D = [éz, 0; 0]T.)
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| Now, consider the line §; of the first leg spring. Its coordinates are 81, and
via (3.18), points on that line in the moveable platform must displace with a
component §'f D along that line. Because the first moveable pivot point is on that
line, the component s'f D defines the extension of the first leg, and consequently,

§ly = §f D. Repeating for the other two legs gives

611 ) Cl 31 7‘1 52
612 = C2 82 7'2 6y y (3.19)
613 C3 53 7'3 6¢

which is the same as (2.16). Consider the line 637 with coordinates §]. (See Figure
3.7.) Because this line is perpendicular to §; (and parallel to 5$1) and passes
through the first moveable pivot point, then Iy 66, =§'1T D. Repeating for the

other two legs and combining the results yields,

11 501 -8 ¢ 51"1 bz
where I3 864 —33 c3 br3 ¢
67'; = 5ri + li' (3.21)

Substituting (3.20) and (3.19) into (3.16) determines the mapping of stiffness

(3.10), and the spring matrix assumes the form,

k11 kg k3 cp cg e || by 0 0 He s o1
ko) kgg kag |=| sy sy s3I O kg 0 |} cg sy oy |4
k3 k3p kg3 | [ 1 oro T3 | O 0 k3 || e s3 73
—$] —8y —3s3 Fkl(l—pl) 0 0 -5 ¢ )
g ¢cg 3 0 ko(l—py) O —35 cy Orh
éry bry brg ] 0 0 kg(l—pg)|| —sg3 cg ©érh

(3.22)
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A more compact expression for (3.10) assumes the form,

W =[K] D, (3.23)
where from (3.22), the 3x3 stiffness matrix is ‘
K] = B] (k) 617 + (81 k(1 — o)} (657 (3.2
where
the it® column of [i] is §; ([j] is the formal instantaneous static Jacobian
relating the differential change in the scalar spring forces to W),
the i*® column of [61] is 88; ([6]] is derivative of [j] with respect to 81, b5,
and &),
the it column of [63'] is 68},
and where

[k;] is a 3x3 diagonal matrix whose iit2 element is k; and
[k;(1 ~ p;)] is 2 3x3 diagonal matrix whose iith element is ki(1-p).
(The spring matrix (3.24) can be considered an extension of the spring matrix [K]
of (3.8).) Comparing (3.21) and (3.22) with (3.24) yields
(6 = [65]" + []7, (3.25)

where [I.] is the 3x3 matrix of moments:

0 0 0 |
=] 0 0 0 | (3.26)
oy g

Substituting (3.25) into (3.24), [K] can be expressed in the form,
(K] = ] (k] (17 + (3] [R5(L — )] (6517 + (6] [R;(2 = )] [5]7, (3.27)

for which thg following observations can be made:
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i) The spring matrix [K] is not symmetric. It is the sum of three
matrices. Only the first two are symmetric. Specifically, the last matrix
causes the asymmetry, and it is of the form:
00 % - ki(l - pi)lisi
[63] [ki(l - Pi)] [li}T =100 Eki(l - Pi)lici . (3-23)
0 0 Xk(l-p)Lér
It is clear that this 3x3 mairix provides elements in the third column of
[K], and therefore, the upper 2x2 of [K] is globally symmetric. For small
(1 —p;), [K] remains nearly symmetric. ([X] cannot be made symmetric
by a change of coordinate system, because a change in representation
assumes the form, [K'] = [E]7[K][E], where [E] defines the transformation
of twist coordinates.)
ii) There are eight independent elements in [K], which are specified by
14 parameters. (4 points, three spring constants, and three free lengths.)
Therefore, there are an oo® of three-dimensional springs of this type
having the same [K].
iii) It is unclear exactly under what conditions the symmetric part of
[K] will be positive definite® (It may be recalled that for the two-
dimensional spring, the 2x2 [K] is positive-definite when p; <1.) For a
- given planar three-dimensional compliant coupling, ranges for the p;’s
éan be established that will ensure positive definiteness. But when a p;
deviates significantly away from these ranges, ad hoc calculations of the
signs of eigenvalues of ([K]+[K]T)/2 are required to determine its

definiteness (signature).

3A matrix [K] can be expressed uniquely as the sum of a symmetric matrix
(K] + [K]T)/2 and a skew-symmetric matrix ([K] — [K]|T)/2.
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iv) The matrix [K] can be non-singular even though [j] is singular, or it
can be singular even when [j] is non-singular. (This is analogous to the

planar two-dimensional case.)

It is instructive to consider a numerical determination of [K]. This is
accomplished by the development and the repeated application of an algorithm
that determines the nominal wrench W, that must be applied to the coupling when
the position and orientation of the coupling is specified. In other words, numerical
values for the right side of (3.11) are inserted to determine W, For example,
consider that

ki =ky=ky =10 N/em,,

101 = 102 = 103 =12 cm.,

2 =Tp=y =¥y =v3=0,

zg= 15 cni.,

u = 10 cm. (length of moveable platform),

zp =30 cm., yp =40 cm., ¢ =45

8y = 53.130°, 65 = 51.778", 04 = 64.879",

ll = 50.0 cm., Iy = 59.916 cm., 13 = 51.989 cm.,

p1 = 0.240, p5 = 0.200, p5 = 0.231.
Substituting these values into the right side of (3.11) gives wg = [694.23 N, 1042.50
N; 5430.92 Nem]T.

Now increment zp by $zp =5(10)"6 cm (keeping yp and ¢ the same).
This specifies the twist D= [«Sz:p, 0; 0]T. Make the appropriate substitutions in
right side of (3.11), which yields W{,. Dividing the increment of force, W5 — Wq, by

bzp yields the first column of the numerically obtained [K].
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Repeating the same calculation for a dyp = 5(10) ™ 6 cm specifies a twist
D =0, 6yp; 0]T. This is used to determine the second column of [K].

Finally, repeating the calculation for a small rotation é¢ = 5(10) ~ 6 radians
of the moveable platform about the origin yields the third column of [K]. For a
twist D = [0, 0; 6¢]T, the point P displaces, and bzp = —6¢ yp and Syp = é¢ zp
(obtained from (3.9) with £ =y = 0). The numerical value for the [K] matrix thus

obtained is

25.336 N/em  3.0127 N/em  —1029.190 N
3.0127 N/ecm  27.953 N/cm 837.992 N
13.308 N 143.760 N 4702.896 Ncm

This matrix is asymmetric and has a positive-definite symmetric part. This is the

same result that was obtained analytically using (3.27).

3.3 Spatial Six-Dimensional Spring

Figure 3.8 illustrates a plan view of a moveable platform connected to
ground by six translational springs! acting in-parallel. The six springs taken
together as a single unit define a spatial siz-dimensional spring. The spring is
spatial and six-dimensional since, in general, six independent forces act in 1its
tra.ﬁsla.tional springs.

The moveable platform is defined by its spherical pivot points r, s, and t,
while the grounded spherical pivots are points o, p, and q. The six springs are
connected pair-wise to these pivots. A coordinate system is considered fixed to
ground, with its origin at o. Point p is on the z-axis, while point q lies in the zy
plane. Points p, q, I, s, and t are located relative to o with position vectors op, o4,

— — -2 :
or, o8, and ot, respectively.

‘Each of the springs can be thought of as acting in the prismatic joint of a-
spherical-prismatic-spherical serial chain. Six such serial chains act in-parallel to
define the simple compliant coupling delineated in Figure 3.8.
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Figure 3.8
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A resultant external wrench with six coordinates Wo = [f j Mg] is applied to
the moveable platform.® The external wrench is in static equilibrium with the six
spring forces, ‘and the system remains in static equilibrium as the moveable
platform twists relative to ground. To accommodate this, the external wrench
changes as the moveable platform moves, and its cha,nge.is defined as a wrench
increment. (The wrench increment has the six coordinates W = [6f ; 6fig).)

It is required to determine the mapping

w =[K] D, (3.29)
where the wrench increment is given by w = [6? ; 6rly) is related via a 6x6 stiffness
matrix [K] to the twist of the moveable platform relative to ground, which is given

by the six twist coordinates® D = [§%o; 64]. (This example is a more thorough
investigation than the one given in Section 1.4. Here, the 3-3 is not restricted to
being near an unloaded configuration, and the above mapping is not symmetric.)
To obtain (3.29), it is necessary to establish the gedmetry of the system.

The following are position vectors that define the directions of the six legs, and
their magnitudes define the lengths of the six legs:

L=IR, =R =23, =|=c-a], .

=gt =5t - &) 15 =] =5 -5}, and 15 =l (3.30)
The lengths of nine of the twelve edges of the octahedron must be known. In

A wrench can be thought of as a force (with coordinates [f; 0]) acting
though the origin together with a general couple (with coordinates [0; fg)).
Adding these sets of coordinates together reproduces the original six wrench
coordinates: % = [f; ).

SA twist can be thought of as a rotation (with coordinates [; 6¢]) about a
line through the origin together with a general translation (with coordinates
[6%; 0]). Adding these sets of coordinates together reproducés the original six twist
coordinates: D) = [§%; 64).
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addition to the six I, the following three distances between grounded pivots must
be known:

dy =|5B], dy =|p4 = 54 - B}, and dg =] 54| . (3.31)

In order to determine (3.29), two orientation angles must be defined for each

leg. Figure 3.9 (See Griffis and Duffy [1989].) illustrates this geometry. An o

angle defines how the jth 1eg is oriented within a side face of the octahedron, while

fx, Oy, and 0 define the elevation angles of the three side faces from the zy plane.

The six a; are defined as follows:

a £

oy Zsop

Qg Zops

ag | £tpq
oy Zpqt

o Zrqo

og Zqor.

The determination of (3.29) begins with an expression of the finite forces
that the resultant wrench applies to the springs. Direct extensions of (3.2) and

(3.11) yields the expression,

- .
- T 1 F1 =)
f g g 5 5 5 g ko (Ig = 159)
1 2 3 4 5 I
_ 3U3—la3) |
kg (L ~1 )
. " g (g—=Toy
m 0 Opx§o 0PpXFq 0qXT, 04 X5, 0
0 PXSp OpxsS3 04x34 5 ks (I ~15)
ST ~ [ F6 (g —1op) |

(3.32)
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where k; (I, —1 ) is the force in the jth leg due to the extension of the ith

spring,
where § ; is the direction cosines of the line of the itR leg, and where 0 is a zero
vector. The direction cosines can be obtained from the position vectors aligned
along a given leg, and these six sets are given by

-

§.=98 g =
157,052

el
1]

SISl
Il

e 2N}

- —
,s5=l—,a.nd§'6=-‘l"€r. (3.33)

The lower three rows of the 6x6 matrix in (3.32) contain the moments of the six
lines. Because locations of the grounded pivots 6p and oq are known constants,
this matrix is solely a function of the direction cosines of the six legs.

A differential of (3.32) is an extension of (3.3) and (3.13) is expressed here in

the form,

I [ %, oy
7 ko 61y
kq 613
¥ o || kg Oy
g | 0 opx§9 opx§3 0qx§, 0qX5y 0 ks 8l

| kg ol |
55 55 55 55 55 55 ko(1 = po)lg

1 5 3 4 5 6 || i

3(1 = r3)i3

ky(1—py)l
0 Op X 65y 0P X 655 54X 65, 04x 655 O ks (1~ ps)ls

- | Fe(1 — gl
(3.34)
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where only é§; remain to be determined. (Note that in (3.34) the dimensionless

ratios p; =1 ./l. have been incorporated.)

Figure 3.10 illustrates for a representative leg that 65; may be written as a

linear combination,

63, = 659 5, 60+ 637 6o, (3.35)
where |
'“0 i — e
657 =V,, s; = sin(a;), and 55’? =7, x5},
and where
2 a; X §;
K e

Note that ” 65'? " =1, and " 65 " = 1. The six i; are constants given by

op pq ~p4 ~od o4
u —'E—,u2 T 113=-d—' u = =-—q,a,ndu6=@.(3.36)

— - —

= - - - - - — 6[
5f Sl 32 53 34 85 56 612
k. 3
= — — — — - ' 614
) a7 0 op X§y Op X§3 0 X5, 0qx§y 0 6l

| - 115, 665
59 59 sd el s s '2%2 %%y
2 3 4 6 !

333 502
1,5, 60
454607
0 pxosf opxssd oqxssd sgxssd 0 Is 55 66
L 'J —1636 Eax_J




109

T

1l

0T’ amSiy



110

- —Il 5a;
E T R - Iy bay
+ ki(l"Pi)

— — — - 14504
0 oBx&eg Px65F o4 x8EF &Y O

) s g

(3.37)

which in analogy with (3.16) contains the 6x6 diagonal matrices [k;] and
[k; (1= pp)].

Equation (3.37) can be alternatively expressed in the compact form,

W = {j] [ki] ol + [5jg] [ki(l —Pi)] 68* +[6ial [ki(l - Pi)] éa*, (3.38)

where 68* = (1151 68y, ..., lgsg 86x]T and éa* = [} 6ay, ..., Ig bag]™. From (3.37),

the columns of the 6x6 matrices [j], [6jg], and [8jq] are line coordinates. While the

ith column of [j] is the line coordinates for the line $; of the ith leg, the ith column

of [4iy] is the line coordinates of the derivative 637 with respect to the appropriate

f, and the ith column of [6ia] is the line coordinates of the derivative 6$ia with

respect to o;. Figure 3.10 illustrates that the two derivatives pass through the

’
same grounded pivot as $i' Because the $i always passes through the same
grounded pivot, it is clear that its derivative must also pass through that point.
(This can be considered to be an extension of (3.15).) The three lines §, 5$0, and
6$% are mutually perpendicular.

While comparing (3.38) with (3.29), one sees that it remains to make

substitutions for él, éa™® and 68* in terms of D. This silstitution inherently

determines a compatible set of the 18 differentials 6], ™, and 66*.
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Equation (1.26) has already demonstrated that
§1=[j]* D, - [(20)]
which is analogous to (3.19).

In order to obtain o™, consider that a derivative line 65? has been given a
self-parallel displacement along the ith leg, until it contains the point at the end of
the leg. (See Figure 3.10, which illustrates the resulting line as 5$?’ and the end of
the ith leg is shown as g.) It remains to project the displacement of the end point
of the leg onto 5$?’.7 Therefore, for the jth leg,

I 6o = (83%)T D =659 - 8%o+ (3 x &5F) - 64, (3.39)

where the normalized line coordinates of 6$f” are given by 5§f" = [6575 og X 657,

where Og is a position vector from point o to pdint g (the end of the ith leg).
Equation (3.39) can be applied to all legs so that

§a* = [§ja]" D, (3.40)

where the il column of the 6x6 matrix [6j%] contains the normalized line

coordinates of the line 63?, resulting from a self-parallel translation of the ith line

682 a distance I; along the jth leg. In other words,

55¢ &3¢ &Y 8y &g &
[6ia] = . (3.41)

R x5 0 x 6TF of x 5§ ot x FF Of x 55 Of x 85§

A comparison of (3.38) with (3.37) and (3.35) yields that [§ji,] may be expressed in
tertus of [8jo). In other words, |
[6ia] = [8ia] + [Vals ‘ (3.42)

where [vq] is a 6x6 matrix of moment vectors:

"This is analogous to the determination of /; 0. in Section 3.2.
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¢ 0 o0 & 6 40
(3.43)

[val = - - - - - -

¥ 1o¥q 1573 1474 1575 1676

In order to obtain 68, consider that a derivative line 6$i9 has been given a

self-parallel displacement along the ith leg, until it contains the point at the end of

the leg. (See Figure 3.10, which illustrates the resuiting line as 5$i9’ and the end of

the ith leg is shown as g.) It remains to project the displacement of the end point
of the leg onto 53?’. Therefore, for the ith leg,

' - - -
L s, 66, = (657)T D =650 . 6%, + (cEx65D) - 64, (3.44)
where the normalized line coordinates of 6$f' are given by 65?’ = [65‘? ; b’g’xﬁé‘?],

where og is a position vector from point o to point g (the end of the ith leg).

. Equation (3.44) can be applied to all legs so that

56* = [6i4]" D, | (3.45)
where the it} column of the 6x6 matrix [6j“’9] contains the normalized line
coordinates of the line 6$i91 resulting from a self-parallel translation of the itB line

6$i0 a distance /; along the ith leg. In other words, similar to (3.41),

9 s &l &) el &Sk

51 2
[6i4) = . (3.46)
osx6§'? o_s’xéé’g o—gxﬁé'g -o—t)xé'é‘g Efxéé‘g «Tr’x&s?g '

A comparison of (3.38) with (3.37) and (3.35) yields that [§jp] may be expressed in
terms of [6j 9]. In other words, analogous to (3.42),
[835] = [85g] + [vgl, (3.47)

where [v ] is a 6x6 matrix of moment vectors:
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0 0 0 0 0 0
[v9]=""““’"“l"”l"'”'l"'"
Ilslxvl 1252XV2 I3S3XV3 4S4XV4 555XV5 GSGXVG

(3.48)
Substitutions of the above equations into (3.38) yields the mapping (3.29),
where the global stiffness matrix is written as the sum of five matrices:
K] = GI{KIGIT + (85 gllky(1 — 28T T + [iallky(1 — p)l[8ic]™ +
[83 gl [R; (1 — DI [v g™ + [Siad[F;(1 = ][Vl ™ (3.49)

The following observations can be made about the 3-3 Stewart Platform compliant

coupling:

i) The asymmetries are due to the last two matrices. (The first three
are symmetric.) Specifically, the last 6x6 two matrices have elements in
the last three columns only. Therefore, the upper-left 3x3 of [K] remains
globally symmetric. (The matrix [K] cannot be made symmetric by a
change of coordinate system, because from (1.12), [K'] = [E]T[K][E].)

ii) Twenty-one independent parameters exist in a symmetric [K]. (See
Section 1.4.) It is clear that this number will increase for the global [K].
That the upper-left 3x3 is symmetric may lead one to believe that there
are 33 independent elements. But, the upper bound is 30, since the
matrix was determined by 30 parameters (six points, six spring
constants, and six free lengths), which would result in a finite number of
3-3 Stéwwart Platforms having the same [K]. However, numerical
examples indicate 27 to be the maximum. (The upper-right 3x3 matrix

of the sum of the last two matrices of (3.49) is repeatedly skew-
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symmetric, which introduces three independgnt parameters to the 21 of a
symmetric 6x6 matrix. These three together with the three due to
lower-right 3x3 of the same matrix introduces the six additional
parameters to an otherwise symmetric matrix.)

iii) It is difficult to predict (as it was for the planar three-dimensional
spring) the conditions that [K] has a positive-definite symmetric part
(K] +[K]T)/2. Specifying for all p; close to or less than unity will
presumably keep it positive-definite. However, setting exact limits on all
six p; to ensure positive-definiteness would be a monumental task. This
is because the geometry must be expressed in terms of the displacement
of the six legs, which is known to be dependent on an eighth degree
polynomial. (Griffis and Duffy, [1989].)

iv) Similar to the previous two examples, it is clear that singularities in
[j] do not necessitate singularities in [K]. (A singularity in [j] denotes a
statically unstable region.)

v) Singularities in [K] also do not necessitate singularities in [jl. (A
singularity in [K] denotes that some twists will not generate a change of

wrench.)

A numerical exercise convinces one that (3.49) is correct. Consider that [K]
may alternatively be calculated numerically by repeated appliqations of (3.32)
around a given operating position; (This constitutes a natural extension of how
applications of (3.11) performed the same exercise in Section 3.2, and therefore,
such a procedure need not be detailed heré.) Consider the following numerical

"example, where for i = 1, ..., 6, the spring constants and free lengths are
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ki = 10, 20, 30, 40, 50, 60 N/cm. and ! =11, 12, 13, 14, 15, 16 cm.
The five position vectors are |
op = [7, 0, 0]T, 54 = [3.5, 6.062, 0]T, of = [10, 4, 12],
o = [14.041, 8.041, 16.041]T, ot = [14.496, 1.071, 16.496] cm.
For this example, the following stiffness matrix was determined both numerically

and analytically (by (3.49)):

80.0 5.2 75.6 206.9 303.5 -239.5
5.2 39.3 5.2 -581.3 5.3 516.7
75.6 5.2 150.6 466.5 -836.8 -212.2
= 206.9 -15.5 407.2° 21416  -2094.7 -1518.8 |
-202.4 5.2 -532.2 -1725.2 4107.4 608.6
-180.2 212.0 -212.2 -3895.1 -336.4 3263.9

where the 3x3 sub-matrices have the following units —
upper-left: N/cm upper-right: N

lower-left: N lower-right: Ncm.



CHAPTER 4
THE NEW ROLE OF COMPLIANCE IN THE CONTROL OF FORCE

Kinestatic Control has established a new method and philosophy for the
simultaneous control of wrench and twist.! Essentially, the theory depends upon
the knowledge of the mapping of stiffness to establish a geometrically meaningful,
potential-energy-based, positive-definite inner product that decomposes a general
twist into a twist of freedom and a twist of compliance.

An important expeﬁment was successfully performed on an apparatus
consisting of a robot, a force/torque sensor, a compliant device, and a gripper that
was partially constrained to its environment. The constraint wrenches and twist
freedoms of the gripper were simultaneously controlled by commanding the twist of
the end-effector that was connected to the gripper by the force/torque semsor and
the compliant device. This commanded twist was generated by the simultaneous
-control of all siz independent actuators of the robot. The inner product established
by the stiffness of the compliant device decomposed the commanded twist of the
end-effector into a twist of freedom for the gripper and a wrench-corrective twist of
compliance. This implementation employed an empirically determined stiffness

mapping that was asymmetric.

14Twist” is used here as a generic word to denote the infinitesimal
displacement /rotation of one rigid body relative to another, while “wrench” is a
similar generic word for the forces/torques that interact between two rigid bodies.

116
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In general, the methodology necessary to apply Kinestatic Control can be

summarized as follows.

i) A gripper is connected to ground by a robot, and the robot is considered
to. be a spatially deflecting spring. At the outset, it is necessary to
determine the mapping of stiffness for the robot. This mapping relates a
twist of the gripper relative to ground to a change in the wrench (a wrench
increment) that acts on the gripper, and it is independent of the task
required of the gripper. In the spatial case, the mapping can be represented
by

w =[K] D, (4.1)
where W= [Ef : 6] are the six wrench-increment coordinates, where
D = [6%; 6§] are the six twist coordinates®, and where [K] is a 6x6 stiffness
maf;rix. The matrix [K] is not symmetric, and when it is not symmetric, it
is said to be asymmetiric. In general, [K] may be written uniquely as the
sum of a symmetric matrix ([K]+ [K]T)/2 and a skew-symmetric matrix
([K] — [K]T)/2. General Kinestatic Control of the gripper requires the
symmetric part of [K] to be positive-definite.
2In the spatial case, a wrench increment is a (small) force acting along a

unique line together with a (small) couple in the same direction. It can also be
thought ‘of as a force acting through the origin together with a general couple. .

(The coordinates of the force through the origin are [6T; 0], while the

coordinates of the general couple are [0; 6mi], where 0 is a zero vector. Adding
these two sets of coordinates together reproduce the coordinates of the original
wrench increment.)

Similarly in the spatial case, a twist is a (small) rotation about a general
line together with a (small) translation in the same direction. It can also be
thought of as a rotation about a line through the origin together with a general
translation. (The coordinates of the rotation about a line through the origin are

[6; 65], while the coordinates of the general translation are [6%; 6] Adding these
two sets of coordinates together reproduce the coordinates of the onginal twist.)
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Figure 2.1 illustrates a simplified example of this theory —a wheel is
connected to a platform via two translational springs which are capable of
compression as well as tension. The platform is subsequently connt;cted to
ground via two actuated prismatic (slider) joints that are tuned for fine-
position control. (They are stiff and non-back-drivable.) The mapping of
stiffness for this mechanism assumes the form, 6f = [K] 6%, where 6f = [6fy,
§ fy]T denotes a change in the force that is applied to the wheel and where
6% = [6z, 6y|T denotes an infinitesimal displacement of the center point of
the wheel relative to ground. For the numerical example given in Chapter

2, the 2x2 stiffness matrix was [K)] =[ g 155‘.] N/cm.

ii) It is necessary to determine how the gripper is constrained relative to its
environment. This establishes a subspace of wrenches, any one of which
may be applied to the gripper by the environment. This subspace (called
the wrenches of constraint) is in the spatial case described by the column
space of a 6xm matrix [a], where m denotes the number of constraints. In
other words, the columns of [a] are the coordinates of the basis elements of
the wrenches of constraint. (For the example in Figure 2;1, there is a single
constraint, and this is a force fp = fp i, where @y = [.707, .707]T and
where fp is the magnitude of the normal force.)

When the subspace of constraints is established, the subspace of
freedoms is simultaneously established. This unique subspace (called the
twists of freedom) is in the spatial case described by the column space of a
6xn matrix [B], where n denotes the number of freedoms. In other words,

the columns of [B] are the coordinates of the basis elements of the twists of
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freedom. (For the example in Figure 2.1, there is a single twist of freedom,
and this is a displacement in the &, = [ —.707, .707]T direction.)

The twists of freedom share the following relationship with the

wrenches of constraint:

[B]T [a] = [0]nxm. (4.2)
where [0)pxm is an nxm matrix of zeros and where in the spatial case
n+m =6. This is the result of the statement that a wrench of constraint

can do no work. For the example in Figure 2.1, d, - i = ﬁ? ip = 0.

iii) It is necessary to determine the subspace of the twists of compliance that
constitute the twists that are necessary to change the wrenches of
constraint. Therefore, -a. corrective twist must be an element of this space in
order to null a constraint wrench error. This subspace is described in the
spatial case by the column space of a 6xm matrix {C], where the columns of
[C] are the coordinates of the basis elements of the twists of compliance.
Through the mapping of stiffness of the robot, these basis elements have a
one-to-one relationship with the basis elements of the wrenches of
constraint, and
] = (K] [C]. (43)
The subspace [C] can thus be obtained by inverting the mapping of stiffness
(which is a mapping of compliance;):
(€] = K]~ [al. (4.4)
(For Figure 2.1 and the 2x2 [K] given above, the twist ¢f compliance is to a

scalar multiple the displacement & =[—1, 0]T.)
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iv) Once both twist spaces are established, it becomes clear that they are
[K]-orthogonal complements. Substituting (4.3) into (4.2) yields
(BIT [K] [C] = [Olaxm, (4.5)

where the inner product? is a meaningful physical quantity. It is based on
potential energy and is specified by the stiffness of the robot:

(155, D) = DT [K] Dc =0, (4.6)
where ]jb €[B] and Dc€[C)]. (For the example in Figure 2.1,
af [K] dc=0.)

Because the two subspaces are [K]-orthogonal complements, and
because the symmetric part of [K| is positive-definite, it follows that the
subspaces [B] and [C] have no intersection and together span all twists. In
other words, the coordinates D of a general twist is written as

D =G; Dy +Gy D, (4.7)
where f)b are the coordinates of a unique twist of freedom and where D are
the coordinates of a unique wrench-corrective twist of compliance. Equation
(4.7) defines a new law that governs Kinestatic Control, and the
dimensionless scalars G; and G represent respectively twist and wrench

gains.

New research and development must take advantage of this new role of

compliance in the control of force. It should extend the theoretical and

3This meaningful inner product supersedes the widely accepted
techniave of selecting a “compliant frame” and defining a task-dependent inner

product (for homogeneous twist coordinates D = [6%; 64]) that assumes the non-

Euclidean form, .. -~ =

See Duffy [1990]. For the example in Figure 2.1, this results in the erroneous
notion that the best displacement to null an error in the normal force is a
displacement in the normal direction. (See Chapter 2.)
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experimental foundation of Kinestatic Control by developing new advanced
supplementary theories, which themselves must be experimentally verified. In
other words, any new work should itself on further developing the technology of ‘
Kinestatic Control, so that it is easily implemented in the next few years on the

shop floor of a manufacturing facility. The following summarizes three necessities

that facilitate such a goal.

4.1 The Need for Better Stiffness Models

Whitney [1977] is credited for significant work in multi-dimensional force
control when he recognized the force feedback gain matrix [KJ. (See Figure 2.3,
which illustrates a control diagram that has been adapted from the literature.)
From an analytical point of view, this is usually regarded as a matrix that operates
on errors in solely the coordinates of force. However, it is the considered opinion of
the investigator that [K{] be recognized as far more than a gain matrix. It is in
fact a matrix that describes an important geometric mapping. This mapping
cannot be considered as an extension of a one-dimensional example.* It is further
important to recognize now that the two-dimensional wheel example is the simplest
 example of force control. This is because the mapping in the example changes both
the magnitude and the direction of an error in force simultaneously, and this is an
essential requirement.

Whenever back-drivable effects are minimal (shown as dotted lines in Figure

2.3), the mapping described by [Kf] must be regarded as one of compliance that

4Consider the one-dimensional force control algorithms that exist toduy in
the literature. Such a scalar control law operates to essentially scale (in a time
varying way) an error in scalar force. This is so simplified a version of force control
that it is difficult to extend it to more than a single dimension. In other words, the
synthesis of a force controller for a two-dimensional application (such as that shown
in Figure 2.1) is not readily obtained from an extension of a one-dimensional
application. '
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maps a wrench error into a corrective twist (or a force error into a corrective
displacement for the example of Figure 2.1). This mapping changes the errors in
the magnitude, direction, location, and pitch of a wrench into the corresponding
magnitude, direction, location, and pitch of a corrective twist. (For the example in
Figure 2.1, the mapfing changes errors in the magnitude and direction of a force
into the corresponding magnitude and direction of a corrective displacement.) In
other words, Kinestatic Control establishes the [Kf] matrix as being independent of
the task of the gripper:

K] = Gy [K] 71, (48)
where [K| is the stiffness of the robot and where G, is a dimensionless scalar
wrench gain. (See Chapter 2.)

The desire for non-back-drivable actuators is apparently on the increase,
especially when compliance is incorporated into the limbs of a robot. (See Andeen
and Kornbluh [1988].) For such a system, it is important to focus efforts on the
analysis of the mapping of stiffness of the robot, rather than on the synthesis of it.
While work has appeared in the literature in the area of the synthesis of
stiffness — Cutkosky and Kao [1989], Goswami, Peshkin, and Colgate [1990],
Peshkin [1990], and Yi, Freeman, and Tesar [1989] —no detailed analysis of it has
been reported. The state-of-the-art continues to recognize stiffness matrices as
symmetric, and the work of Dimentberg [1965] has remained the standard.
However, his analysis pertains only to compliant couplings that remain near
unloaded configurations.

The author baleves that Chapter 3 documents significant advancements in
stiffness modeling where the global mappings of stiffness are deri{fed for a class of

simple compliant couplings which are not restricted to being near unloaded
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configurations. Such mappings are asymmetric, as were experimentally determined
stiffness matrices given in Chapter 2. These results clearly indicate that in
practice, it is necessary to employ asymmetric stiffness matrices.

The dependence of Kinestatic Conirol on the knowledge of actual robot
stiffness necessitates better and more accurate means of modeling stiffness, which is
in general asymmetric. Typically, robot stiffness is dependent on the configuration
of the entire robot system, which iln addition to the robot (that is made up of links,
drivetrains, actuators & a servo system), consists of a gripper, a force/torque
sensor, and any permanently attached compliant devices. It is clear that a stiffness
model of the robot becomes more accurate as deflections in these elements are
considered. It also becomes more accurate globally as the system deviates from its
unloaded configuration. In other words, the ability to control force and
displacement improves as the stiffness model becomes more accurate.

In modeling stiffness, the definition of accuracy has not been formalized. In
order to extend the work in this thesis, a meaningful means of comparison must
exist to quantify the differences between an actual stiffness and a modeled one. In
other words, given a compliant coupling with its mapping of stiffness and given
some simplified model with its own slightly different mapping of stiffness, how can
the two be compared? It is proposed that the comparison can only be meaningfully
done using the invariant properties of stiffness defined by the eigen-screws together
with their corresponding eigenvalues. (See Section 1.3 and Patterson and Lipkin
[1990a and 1990b].)

Then, the query is the same as that of a hundred years ago, i. e. how does a
rigid body move when it is connected to ground by a complicated network of

springs? (See “The Dynamical Parable,” by Ball [1900].)
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4.2 The Need for Constraint Recognition

The current state-of-the-art in force control does mnot provide for a
comprehensive theory that determines the wrenches of constreint for a partially
constrained gripper. It is important that this subspace {denoted by {a]) be known,
because this establishes those wrenches that may be commanded to the kinestatic
controller. (See Figure 2.3, where ﬁrie[a].) Via Eq. (4.2), the constraints
simultaneously establish the twists of freedom whose subspace is denoted by [B].
(Figure 2.3 shows bi € [B].)

Consider that some differences exist between the modeled constraints
(denoted by [a]) and the actual constraints (demoted by [ap], which by (4.2)
establishes the actual twists of freedom [Bg]). Then, it is desirable to avoid a
situation where the kinestatic controller is commanded a wrench #; € [a] that
would perform work as the gripper moves on an actual twist of freedom Dy, € [Bg).
Clearly, such a wrench cannot be controlled in general.

For the implementation reported in Chapter 2, the constraints were known a
priori, and they remained constant. (In other words, [a] = [ag] was a constant
matrix). However, in a general application, the constraints of the gripper and its
workpiece vary as the robot displaces and orients the palm of the gripper. They
also vary as the gripper changes configuration to manipulate the partially
constrained workpiece. Not only do the constraints themselves move, but they also
change form as well as number.

A priori knowledge of [a] as 4 function of gripper position/orientation and
configuration is not realistic in a general scenario. The main reason is that an

enormous overhead (of [a] being stored as a function of gripper position/orientation
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and configuration) would accompany each and every force controlled operation.
Therefore, it is desirable that a robotic system have the capability to determine [a]
on line in real time from information obtained from all available sensors (e. g.
force/torque semsor, gripper semsors, and robot encoders). When successfully
implemented, this will considerably improve the force controlled robot by making
it more easily adapted to new tasks. (The turn-around-time for a change in task is

considerably reduced, and this constitutes a substantial cost benefit to the user and

the consumer.)

4.3 The Need to Filter Working Wrenches from Sensed Wrenches

Figure 2.3 assigns W, to denote the actual non-working constraint wrench
that is applied to the partially constrained gripper. However, at this time, there is
no known geometrically meaningful way to extract this wrench from the sensed
wrench (provided by a force/torque sensor) denoted here by wg. For example‘, this
is due mainly to the fact that a working wrench of friction acts as é. general wrench.
(In other words, there is not a one-to-one correspondence between a twist of
freedom and a wrench that performs work.)

This filtering problem is a formidable one that must be addressed in order
to accomplish the general control of a constraint wrench. The filtering of working
wrenches from sensed ones must be accomplished by analyzing all physical
parameters constraining the gripper in its environment as well as all available
sensory information. An integral part of this investigation must include friction,

which remains a constraint until the instant that motion commences.
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