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ABSTRACT-—A review of a family of tensegrity structures
that self-deploy from a stowed or packed configuration is
presented. In the packed configuration, the mechanism is of
a cylindrical form with the struts lying side by side. Such
structures may be applied in the deployment of antennas in
space and in the rapid deployment of shelters or tents. This
family of structures evolved from a study of in-parallel plat-
forms with compliant legs or connectors. A number of rele-
vant references are cited.

1. Introduction

This paper is an account of the evolution of a family of
tensegrity structures with elastic ties. The introduction of
elastic ties into what are defined as antiprisms by Tobie
(1967) and tensegrity prisms by Gabriel (1997) enables
them to self-deploy from a stowed or packed configuration,
which is of a cylindrical form with the struts lying side by
side. When such a structure is released from its stowed
position, it self-deploys and reaches a position of minimum
potential energy.

One major application of these novel self-deployable
structures is in the deployment of antennas in space. An
example is illustrated in Figure 1. Incorporated in the base
and top are a pair of octagonal-shaped antennas. The self-
deployable structure illustrated in Figure 2 is suited to
house a single pentagonal-shaped antenna in its base.

Another major application is in self-deploying shelters
or tents, which could house personnel and store equipment.
Figure 2 illustrates a self-deployable teepee with a pen-
tagonal base. It is important to recognize that these types
of structures could be used as self-deployable cells or
units, which could be joined together by telescoping struts.
In this way, much larger and different-shaped shelters
could be assembled relatively easily in a short amount of
time.

The term tensegrity was coined by R. Buckminster
Fuller (1960). (See Sadao [1996] for an invention by one
of his students, K. Snelson, in 1948; see also Pugh [1976a,
1976b], Fuller [1975], Pearce [1978], and Roth and White-
ley [1981].) It stems from a combination of tension and
integrity and is used to describe structures that consist of
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Figure 1. Self-Deployable Tensegrity Structure

Figure 2. Self-Deployable Tensegrity Structure with a Pen-
tagonal Base

an assemblage of ties and struts, which are in tension and
compression. No pair of struts is connected or touches. In
the plane, each strut is connected to a pair of ties, whereas
in three dimensions, each strut is connected to three nonco-
planar ties as illustrated in Figure 3.

2. The Evolution of a
Family of Self-Deploying
Tensegrity Structures

This section is a brief account of the evolution of a fam-
ily of tensegrity structures with compliant ties, which en-
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Figure 3. Struts and Ties

able them to self-deploy from a stowed or packed configu-
ration. The evolution is summarized in Figures 4a-4d. It
essentially begins with the analysis of in-parallel manipula-
tors (see Figure 4a). Compliance within the legs of these
structures leads to the replacement of alternating legs with
ties (Figures 4b and 4c). This concept is then expanded to
higher order structures (3-3 through 4-4 and 6-6), with the
platform upper and lower “surfaces” replaced by ties and
deformable materials. It is these deformable surfaces that
can act as antenna or tent surfaces.

2.1. In-Parallel Manipulators

An in-paralle]l manipulator consists of a top (moving)
platform connected to a base (fixed) platform by six legs
(or connectors), each of which is an S-P-S kinematic chain
as illustrated in Figure 4a. The letters S and P denote ball-
and-socket and prismatic joints, respectively. Each leg can
rotate about a line connecting corresponding points in the
base and top platforms. Such motions cannot of course
affect the gross motion of the top platform. The term in-
parallel was coined by Hunt (1983) to denote that all the
connectors consist of the same sequence of kinematic
pairs. The top platform has in general six linearly inde-
pendent instantaneous freedoms measured relative to the
base and is said to have 6 degrees of freedom. Typically,
the six prismatic joints (one in each leg) are actuated to
position and orient the top platform as desired. When all
the prismatic pairs are locked, the platform is a structure.

There are multitudes of in-parallel mechanisms with
S-P-S connectors, and it is convenient to label them by
counting the number of connecting points in the base and
the top. Figure 4a illustrates a 6-6 platform, whereas Fig-
ure S illustrates a 3-3 platform (an octahedron with three
connecting points in the base and top platforms), a 6-3
platform, and a regular and a special 6-6 device. The 6-3
device is a kinematic model of the Stewart (1965) plat-
form. It was Stewart who suggested the potential of the 6-3
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device as a flight simulator, and this technology has
evolved to a highly sophisticated level since the mid-
1960s.

The study of in-parallel platforms largely lay dormant in
academia until Fichter (1986) published a paper on the the-
ory and construction of the Stewart-Gough platform.
Whereas the so-called forward and reverse finite displace-
ment analyses of serial manipulators had been heavily
researched over a period of some 20 years, nothing was
known about the difficult forward analysis of in-parallel
manipulators: “It is required to compute all possible
assembly configurations of the manipulator given the
dimensions of the top and base platforms together with the
six leg lengths.” Kinematicians prefer closed-form solutions
as opposed to iterative searches that may fail to find all the
real solutions. Briefly, a closed-form solution is expressed
by a polynomial in a single variable, which is usually
obtained by algebraic elimination from a set of equations
in several unknowns. Care must be taken to perform a sin-
gle elimination (see Salmon, 1876) to avoid obtaining a
high-degree polynomial that contains unwanted extraneous
roots.

Griffis and Duffy (1989) were the first to obtain an 8th-
degree polynomial for the forward solution of the octahe-
dral 3-3 platform and the Stewart-Gough 6-3 platform (see
Figure 5). There are a maximum of eight real assembly
configurations above the base platform and eight reflec-
tions through the base platform. These results were later
independently confirmed by Nanua et al. (1990), who also
obtained an 8th-degree polynomial using a different prob-
lem formulation.

It was becoming clear that as the number of connecting
points in the base and top platforms was increased, the dif-
ficulties in deriving a single polynomial were magnified
and its degree increased significantly (see Lin et al., 1992;
Lin et al., 1994; Innocenti and Parenti-Castelli, 1993a,
1993b; Innocenti, 1995; Husty, 1996). It finally emerged
that the polynomial for the general 6-6 platform was 40th
degree.

A dilemma existed. Whereas the 3-3 octahedral platform
was the most attractive because it is the most geometrically
stable platform, having all triangular faces, and because its
forward analysis requires the solution of only an 8th-
degree polynomial, the design of concentric ball-and-
socket joints is difficult and can lead to mechanical inter-
ference. This is unacceptable. On the other hand, a 6-6
platform avoids mechanical interference in design. How-
ever, a forward analysis requires the solution of a 40th-
degree polynomial, which is impractical, and not geometri-
cally stable if one deviates far from the octahedral plat-
form. In other words, the center point of a pair of
concentric ball-and-socket joints should be separated into a
pair of distinct ball-and-socket joints whose centers are just
far enough apart to avoid interference of the legs. Further-
more, if one separates each pair of concentric ball-and-
socket joints along the sides of a triangle, a special 6-6
platform is obtained (see Figure 5) whose forward analysis
requires the solution of only an 8th-degree polynomial.
This design was patented by Griffis and Duffy (1993)
through the University of Florida.

Since the publication of Fichter’s (1986) cornerstone
paper, the subject of parallel manipulators has attracted
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worldwide attention in academia accompanied by a multi-
tude of papers published in journals and conferences.
Because of space limitations, only a selection of relevant
references are listed: Behi (1988), Chou and Sadler (1993),
Haug et al. (1992), Masory (1993), Hunt and McAree
(1998), Merlet (1987, 1988, 1989, 1994, 1995), Sugimoto
(1989), and Zhuang et al. (1995).

2.2. Platforms with Compliant Legs

In 1988, Duffy and colleagues' began to study platform
devices with compliant legs as illustrated in Figure 4b. Lin-
ear springs were inserted into each of the S-P-S connec-
tors. Prior to this study, platforms had been used

exclusively as flight simulators or as rides at amusement
parks. In these applications, the top platform is free to
pitch, roll, and yaw, and there is no contact with the
environment.

The study of platforms with compliant legs was com-
pletely novel. Unlike previous applications, the top plat-
form was to come into contact with the environment and
be used to measure and control contact force. It is well
known that a small change in force, 8f, can be produced by
a small displacement, 8x, of a linear spring, and that &f =
kbx, where k is the spring constant. Here, k can be consid-
ered as a stiffness-mapping matrix. Consider now that the
preloaded compliant mechanism shown in Figure 4b is in
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change in the externally applied wrench, 8w. The top plat-

form will begin to twist on an infinitesimal screw, and the

So . Here, the small dis-
o

placement of a point in the top platform coincident with a
reference point O is 8S, = 8x,i + 8y, j + Oz k and the small
rotation about the screw axis is 3¢ = 8¢, i + 8¢, j + 8¢, k.
0S, and &¢ are also a pair of vectors in R,.

A first objective of the study was to derive the 6 X 6
stiffness mapping (K) for the compliant mechanism such
that ow = [K]aﬁ. This mapping was derived properly using
line geometry and basic statics. The properties of the stiff-
ness mapping were investigated by Griffis and Duffy
(1990, 1991). A different but related study was performed
by Loncaric (1985).

twist may be written as D=

2.3. A Family of Self-Deploying
Tensegrity Structures

It is important to recognize that we are not claiming any
advanced expertise in the field of tensegrity structures in
general. It is equally important to recognize that we pos-
sess an expertise in the analysis of in-parallel platforms
with and without compliant legs or connectors. Such
analyses are best based on screw theory and line geometry.

Figure 6 illustrates the family of tensegrity prisms under
consideration. These are certainly not new. (However, we
claim that the introduction of elastic ties to effect self-
deployment is novel.) Fuller (1960) reported the octahe-
dron tensegrity structure with the triangular base and top.
As far as we are aware, the remainder of this family
tabulated in the second column was first investigated by
Tobie (1967). More recent accounts of these structures,
which are called skew prisms, are presented by Kenner
(1976) and Gabriel (1997). As pointed out by Tobie, each
skew prism is derivable from a corresponding prism of par-
allel struts simply by an appropriate rotation o, of the top
platform relative to the base. The tensegrity pyramids in
the third column are derived from the second column sim-
ply by reducing the upper faces in size. In practice, the
struts have finite diameters, and as the upper face is
reduced they will eventually touch and the structure is no
longer a pyramid structure. However, models demonstrate
that such structures will self-deploy from a stowed
position.

A relative rotation angle o between each top and base
can be measured by rotating the top of each prism in the
first column, which is called a parallel prism because all
the ties are parallel. The top can be rotated counterclock-
wise or clockwise, defining right- and left-handed tenseg-
rity prisms, which are mirror images of each other. The
tensegrity prisms in the second column are all counter-
clockwise. It is a remarkable result that for inelastic ties,
the value for o is unique for each tensegrity prism and is
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given by o0 = 90—@, where n is the number of sides of
n

the upper or lower polygons and, hence, oo = 30, 45, 54,
and 60 degrees for the triangle, square, pentagon, and
hexagon, respectively. This result was derived by Kenner
(1976) and is based on Tobie (1967). The value for o,
together with the sizes of the tops and bases and their
distance apart, enables one to compute the lengths of the
struts and ties.

3. Deployable Tensegrity Papers

During the 1990s, tensegrity structures became increas-
ingly applicable in space structure design, including space
frames, precision mechanisms, and deployables. One of the
leading researchers in this field (Motro, 1992) edited a
special edition of the International Journal of Space Struc-
tures that was dedicated to tensegrity. Snelson (available at
http://www.teleport.com/’ pdx4d/docs/rmoto.html) wrote an
introductory letter for this edition describing his invention,
Fuller’s contribution to its development, and the synergy
between art and engineering. Motro’s work has focused
predominantly on the stability of tensegrity structures,
including force density (Motro et al., 1994), nonlinear
analysis (Kebiche et al., 1999), and morphology (Motro,
1996). Despite his clear focus on the engineering aspects
of tensegrity, Motro has an excellent grasp of the artistic
applications for this work. There is a clear development
of stable, strut/tie structures from rectilinear (one-
dimensional), to planar (two-dimensional), to spatial
(three-dimensional). The 3-3, octahedron tensegrity is an
excellent example of a spatial structure. Motro has devel-
oped multiple tensegrity structure designs that solve some
of the toughest curved-surface problems for space struc-
tures. This class of structures is extremely lightweight,
with excellent geometric stability and deployability.

The Motro (1996) paper is perhaps the best comprehen-
sive review on the origins and applications of tensegrity.
Motro explained the utility of tensegrity design in mechan-
ical systems in very clear terms and with excellent refer-
ence to system requirements. A series of patents were
issued between 1959 and 1965 by Snelson and Fuller that
describe the mechanics and application to structural engi-
neering. Motro states: “Tensegrity systems are composed
of two sets of elements, a continuous set of cables, and a
discontinuous set of rectilinear struts. The whole defines a
reticulated space structure in a state of self-stress such as
tension which is exclusively carried by cables and com-
pression by struts” (p. 236). Based on this definition, the
tensegrity application in self-deploying structures follows
the assumption that all tensile members (ties) are in tension
and all compression members (struts) are in compression.
This can only be achieved when the structure is in a few
configurations (tensegrity positions).

Wang (1998a, 1998b) has performed some of the best
work on cable-strut systems as an extension of tensegrity.
Reciprocal prisms (RP) and crystal-cell pyramidal (CP)
grids, which technically exclude tensegrity systems, are the
basis for his space frame applications. He developed a
hierarchy of feasible cable-strut systems that include his
new discoveries and tensegrity. Starting with triangular RP
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Figure 6. Family of Tensegrity Prisms

and CP simplexes, square, pentagonal, and hexangular sys-
tems are developed to build cable domes, ring beams
(Wang, 1998c), and double-layer tensegrity grids (Wang
and Liu, 1996). His work on the feasibility of these new
applications is very important for space structure
development.

Pellegrino and colleagues have focused on the applica-
tion of tensegrity in deployable space structures. Precision
is of great concern with these kinematic systems, and
recent system developments have required even higher pre-
cision from much. lighter structures. By developing the
mathematics for cable-constrained nodes, You (1997) has
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been able to very accurately model the position of mesh
antenna surfaces, including proven experimental results.
Studies on the analysis of mechanisms (Calladine and Pel-
legrino, 1991), folding concepts for flexible but solid sur-
face reflectors (Tibbalds et al., 1998), and shape control
based on stress analysis (Kawaguchi et al., 1996) have all
greatly contributed to the state of the art. Infinitesimal
mechanism analysis has led to prestressing conditions that
are critical for understanding deployable tensegrity struc-
tures. Pellegrino and colleagues’ work with semisolid
antenna reflectors has solved some of the fundamental
problems associated with deploying these delicate systems.
Launch capacity (size and weight) has continually reduced
in recent years, requiring multiple folding systems to pro-
vide larger and larger structures. Obviously, once these
structures are deployed and in operation, the surface must
be maintained to meet performance requirements. Pelle-
grino and colleagues have led the community in predictive
models for using stress profiles (and node position control)
to ensure reflector surface positioning is maintained.

Skelton has seen the control of tensegrity structures as a
new class of smart structures (Skelton and Sultan, 1997).
This work has been applied to deployable telescope design
(Sultan et al., 1999a), where precision is orders of magni-
tude tougher than deployable antennas. Skelton has also
been instrumental in the development of integrated design
(Sultan and Skelton, 1997) and reduction of prestress (Sul-
tan et al., 1999b), which are critical for solving position
correction and dynamic control issues.

Clearly, the applications for tensegrity structures have
been continually studied since its creation by Snelson in
1949. Some applications (antennas) have been considered
by some of the world’s leading structural researchers.
What sets our work apart from this previous work is the
direct application to self-deployment. By using our back-
ground in kinematics and mathematics, the stability (and
therefore utility) of these structures is assured. In the case
of deployable space antennas, there is much expense
and risk attributed to the deployment mechanism, which
converts a stowed columnar structure into a parabolic
reflective surface in orbit. Similarly, the deployable tent
application provides a complete, single-component, stowed
structure that can be easily self-deployed for field use. This
allows for no specific tooling or potential for loss of sys-
tem components. Deployable tensegrity structures are
unique due to the significant reduction in systems com-
plexity. The previous development of similar systems has
been extremely difficult and risky, greatly increasing cost.

4. Closing Remarks

The architectural design community was instrumental in
the development of tensegrity since its inception in the
1950s. This comprehensive work has benefited the engi-
neering community by providing a multitude of concepts
that have helped solve several structural problems. Clearly,
Fuller and Snelson were the creative forces in the concep-
tion of tensegrity. The detailed work of numerous engi-
neering groups in France, China, the United Kingdom, and
the United States allows this practical application.

We have built on these significant accomplishments,
adding kinematic structure and deployable space systems
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experience to define a new class of self-deploying struc-
tures using elastic ties.
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