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Abstract 

In this paper the mathematical model to perform the static analysis of an antiprism tensegrity structure 
subjected to a wide variety of external loads is addressed. The virtual work approach is used to deduce the 
equilibrium equations and a method based on the Newton’s Third Law to verify the numerical results is 
presented. In the second part of the paper several numerical examples are given. 

 
1. Introduction 

Tensegrity structures are spatial structures formed by a combination of rigid elements (the struts) and 
elastic elements (the ties). No pair of struts touch and the end of each strut is connected to three non-
coplanar ties [1]. The struts are always in compression and the ties in tension. The entire configuration 
stands by itself and maintains its form solely because of the internal arrangement of the ties and the struts 
[2]. Tensegrity is an abbreviation of tension and integrity. 

 The development of tensegrity structures is relatively new and the works related have only existed for 
the 25 years. Kenner [3] established the relation between the rotation of the top and bottom ties. Tobie [2] 
presented procedures for the generation of tensile structures by physical and graphical means. Yin [1] 
obtained Kenner’s results using energy considerations and found the equilibrium position for the unloaded 
tensegrity prisms. Stern [4] developed generic design equations to find the lengths of the struts and elastic 
ties needed to create a desired geometry. Since no external forces are considered his results are referred to 
the unloaded position of the structure. Knight [5] addressed the problem of stability of tensegrity structures 
for the design of a deployable antenna. 

In this paper the problem of the determination of the equilibrium position of a tensegrity structure when 
external forces and external moments act on the structure is addressed. 

 
2. Nomenclature 

Figure 1a shows a tensegrity structure formed by n struts each one of length . In every structure it is 
possible to identify the top ties, the bottom ties and the lateral or connecting ties which are denoted as T, B 
and L respectively. Figure 1b shows the same structure. The bottom ends of each strut is labeled 
consecutively as  where 1 identifies the first strut and n stands for the last strut. 
Similarly the top ends of the struts are labeled as . The selection of the first strut is 
arbitrary but once it is chosen it should not be changed.  
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3. Generalized Coordinates and Transformations Matrices 

Figure 2a shows an arbitrary point P located on a strut of length . In a reference system D 
whose z axis is along the axis of the strut and with its origin located at the lower end of the strut, the 
coordinates of 

sL

D P are simply (0,0,l). However frequently is more convenient for purposes of analysis to 
express the location of P in the global reference system A. 
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Figure 1. Nomenclature for tensegrity structures. 
         a) Components; b) Strut ends. 

If the lower end of one strut is constrained to move on the horizontal plane and also the rotation about 
its longitudinal axis is constrained, the strut can be modeled by a universal joint. In this way the joint 
provides the 4 degrees of freedom a sociated with the strut. The total system has 4*n degrees of freedom 
which means there are 4*n generalize  coordinates.  

For each strut the generalized coordinates are the horizontal displacements aj, bj of the lo er end of the 
strut together with two rotations about the axes of the universal joint, εj and βj. εj corresponds to the rotation 
of the strut about B x axis and βj corresponds to the rotation about C y axis, see Figure 2b. 

The alignment of the z axis on the fixed system with the axis of the rod can be accomplished using the 
following three consecutive transformations, [7]: translation, t=(aj, bj, 0), rotation ε about the current x axis 
axis ( B x) and rotation β about the current y axis ( C y). 

The coordinates of P expressed in the global reference system are 
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Substituting the above three expressions into (1) yields 
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In addition to the constraint imposed that the lower ends are to remain in the horizontal plane and for 

each strut to avoid the rotation about its longitudinal axis the following assumptions are made without loss 
of generality: 

• The external moments are applied along the axes of the universal joints. 
• The struts are massless. 
• All the struts have the same length. 
• Only one external force is applied per strut. 
• There are no dissipative forces acting on the system. 
• All the ties are in tension at the equilibrium position, i.e., the initial lengths of the ties are greater 

than their respective free lengths. 
• The free lengths of the top ties are equal. 
• The free lengths of the bottom ties are equal. 
• The free lengths of the connecting ties are equal. 
• The stiffness of all the top ties is the same. 
• The stiffness of all the bottom ties is the same. 
• The stiffness of all the connecting ties is the same. 
 

4. Coordinates of The Ends of the Struts 

The Cartesian coordinates of the lower ends E j , expressed in the global reference system A, are 
obtained in terms of the generalized coordinates substituting l in (6) by 0, and replacing a and b by aj, bj 
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Similarly the coordinates of the upper end of the struts A  are evaluated by replacing l by the length of 
the struts  in (6) 
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Equations (7) and (8) permit one to obtain expressions for the lengths of the top, bottom and lateral ties 
in terms of the generalized coordinates as follows 
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where if  then  nj = 11 =+j
 
5. The Principle of Virtual Work for Tensegrity Structures 

The virtual work for systems able to store potential energy can be stated from [6] by 

cnc WWW δδδ +=                      (12) 
where Wδ  is the total virtual work, ncWδ  is the virtual work performed for non-conservative forces and 
moments and cWδ  is the virtual work performed by conservative forces. ncWδ can be represented as 

MFnc WWW δδδ +=                 (13) 
where FWδ  is the total virtual work performed by non-conservative forces and MWδ  is the total virtual 
work performed by non-conservative moments.  

The virtual work performed by the conservative force j, cjWδ  is jcj VW δδ −=  where jVδ  is the 
potential energy associated with the conservative force , therefore the total contribution of the 
conservatives forces 

j
cWδ  is  

VWc δδ −=                  (14) 
where Vδ  is the summation over all the jVδ  present in the structure. 

Substituting (13) and (14) into (12) yields  
VWWW MF δδδδ −+=                (15) 

In equilibrium the virtual work described by (15) must be zero [6], then the equilibrium conditions can 
be deduced from 

0=−+ VWW MF δδδ                (16) 
 

6. The Virtual Work Due to the External Forces 

As it is assumed that there is only one external force acting on each strut, the virtual work FWδ  
performed by all the external forces is given by 

j

n

j
jF rFW δδ ⋅= ∑

=1

                (17) 

where F j  is the external force acting in the strut j and δr j  is the virtual displacement of r j , this is the 
vector that goes from the origin of the global reference system to the point of application of the external 
force. If the distance between the point of application of the force and the lower end of the strut is , see 
Figure 3, then an expression for 

FjL
r j  in the global system can be obtained from (6) replacing l by and its 

rectangular coordinates are 
FjL
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Substituting (19) into (17), th
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9. The General Equations 

Now that each one of the terms contributing to the virtual
condition for the general tensegrity structure can be established
and re-grouping yields 
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Equation (26) must be satisfied for all the values of the virtual displacements which in general are 

different from zero, then 

0

0
0

4

2

1

=

=
=

nf

f
f

M
                   (31) 

where  is given by equations (27) to (30). Equations (31) represent a strongly coupled system of 4*n 
equations depending only on the 4*n generalized coordinates. The equilibrium position for a general 
tensegrity structure is obtained by solving numerically the set (31) for 

if

nnnn baba βεβε ,,,,........,,, 1111 , . After that equations (7) and (8) yield explicitly expressions for 
the coordinates of the ends of the struts in the global coordinate system. 

 
10. Initial Conditions 

To be able to solve (31) it is necessary to find a proper set of values for the generalized coordinates in 
the unloaded position. This is accomplished using Yin’s method [1], which is presented here without proof.  
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where n is the number of struts. 
The three unknowns ,  and the length of the connecting ties L are solved using equations (32) 

through (34). These values are used to solve the following set of generalized coordinates for the unloaded 
position. 
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11. Verification of the Numerical Results 

Because of the complexity of the equilibrium equations it is essential to verify the answers obtained. 
An independent validation of the results can be accomplished using Newton’s Third Law. If there are no 
external moments acting on an isolated strut, it is sufficient to perform the summation of moments with 
respect to the lower end of the strut. If there are external moments the verification process involves more 
steps and needs some additional concepts. 

The unitized Plücker coordinates of a line joining two finite points (x1, y1, z1) and (x2, y2, z2), as is the 
case of the forces in the ties, can be written in the global reference system as, [8] 
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The subindex 1 in (43) and (44) identifies the end of the tie attached to the current strut and the 
subindex 2 is for the remaining end of the tie. Further the coordinates of the ends of the ties can be 
evaluated using (7) and (8). 

If L, M and N are simultaneously equal to zero (42) must be modified to 
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When an external force A Fj and its point of application are known, the Plücker coordinates are 
obtained by 
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where A Fj corresponds to the external force expressed in the global reference system and A r j  is given by 
(18). 

The Plücker coordinates can be expressed in a new system that is translated and rotated with respect to 
the global reference system. If the new system is the C system, this is the system defined for the axes of the 
universal joint, the expression that relates the Plücker coordinates in the A system and the C system is, [8] 
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and 03 is a 3 by 3 zeroes matrix. 
Figure 5 shows the free body diagram for an arbitrary strut modeled with a universal joint. In addition 

to the forces in the ties there is an external force Fj which is known, a reaction force R passing through the 
lower end and a reaction moment RM at the lower end. Newton’s Third Law expressed in Plücker 
coordinates in the C system is 
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The coefficients  represent the magnitudes of the forces in the ties  

and are given by k*(w-wo) where k is the stiffness, w the current length and wo the free length of the tie. 
The current lengths are given by (9) and (11) for the top ties and connecting ties respectively. It should be 
noted that the magnitude does not depend of the reference system which is used. 

L,, 11 −+ AjAjAjAj FF L11, −+ AjjAjj AA

The unitized Plücker coordinates for each one of the ties can be calculated in the A system using (42) 
thorough (44) and then converted to the C system using (47) through (50). 

$̂C

The Plücker coordinates of the external force acting on the current strut F$ , can be evaluated in the A 
system using (46) and then converted to the C system with the aid of (47) through (50). 

Mε and M are the magnitudes of the external moments and their unitized Plücker coordinates in the C 

system are given by C [ ] and [ 0 ] T . 

β
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Since the reaction force C $ R   expressed in the C system is a pure force and the reaction moment 

C $ RM

0
 expressed in the C system is a pure moment they have the form [ ] T and 

[ 0 ] respectively. Further they are the only unknowns in (51). 
000zCyCxC RRR

zCyCxC RMRM0 RM T

After expanding (51), rows four and five represent the components in the x and y directions of the 
summation of moments about the lower end of the strut. A universal joint cannot exert moment along its 
own axes. If after a numerical evaluation, RMx and RMy are both zero, then the equilibrium of moments is 
maintained solely due to the forces in the ties and to the external loads (if any) and therefore the current 
position is an equilibrium position. 
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12. Conclusions 

The model developed here allows one to analyze a general anti-prism tensegrity structure subjected to a 
wide variety of external loads. 

The model is developed using the virtual work approach and all the results are checked using the 
Newton’s Third Law. This verification assures one that the answers produced by the numerical method 
accurately correspond to equilibrium positions. 

Mathematical models for variations of the basic configuration of tensegrity structures such as the 
reinforced tensegrity prisms might be developed following the same procedure presented in this research. 
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