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Abstract

In this paper the mathematical model to perform the static analysis of an antiprism tensegrity structure
subjected to a wide variety of external loads is addressed. The virtual work approach is used to deduce the
equilibrium equations and a method based on the Newton’s Third Law to verify the numerical results is
presented. In the second part of the paper several numerical examples are given.

1. Introduction

Tensegrity structures are spatial structures formed by a combination of rigid elements (the struts) and
elastic elements (the ties). No pair of struts touch and the end of each strut is connected to three non-
coplanar ties [1]. The struts are always in compression and the ties in tension. The entire configuration
stands by itself and maintains its form solely because of the internal arrangement of the ties and the struts
[2]. Tensegrity is an abbreviation of tension and integrity.

The development of tensegrity structures is relatively new and the works related have only existed for
the 25 years. Kenner [3] established the relation between the rotation of the top and bottom ties. Tobie [2]
presented procedures for the generation of tensile structures by physical and graphical means. Yin [1]
obtained Kenner’s results using energy considerations and found the equilibrium position for the unloaded
tensegrity prisms. Stern [4] developed generic design equations to find the lengths of the struts and elastic
ties needed to create a desired geometry. Since no external forces are considered his results are referred to
the unloaded position of the structure. Knight [5] addressed the problem of stability of tensegrity structures
for the design of a deployable antenna.

In this paper the problem of the determination of the equilibrium position of a tensegrity structure when
external forces and external moments act on the structure is addressed.

2. Nomenclature

Figure 1a shows a tensegrity structure formed by # struts each one of length Ls . In every structure it is
possible to identify the top ties, the bottom ties and the lateral or connecting ties which are denoted as 7, B
and L respectively. Figure 1b shows the same structure. The bottom ends of each strut is labeled
consecutively as Ei,E2,---,E;j,---,En where 1 identifies the first strut and » stands for the last strut.
Similarly the top ends of the struts are labeled as 41, 42,---, 4;,---, A». The selection of the first strut is
arbitrary but once it is chosen it should not be changed.

3. Generalized Coordinates and Transformations Matrices

Figure 2a shows an arbitrary point P located on a strut of length Ls. In a reference system D
whose z axis is along the axis of the strut and with its origin located at the lower end of the strut, the
coordinates of 2 P are simply (0,0,]). However frequently is more convenient for purposes of analysis to
express the location of P in the global reference system A.
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Figure 1. Nomenclature for tensegrity structures.
a) Components; b) Strut ends.

If the lower end of one strut is constrained to move on the horizontal plane and also the rotation about
its longitudinal axis is constrained, the strut can be modeled by a universal joint. In this way the joint
provides the 4 degrees of freedom associated with the strut. The total system has 4%z degrees of freedom

which means there are 4*n generalized coordinates.

For each strut the generalized coordinates are the horizontal displacements aj, b; of the lower end of the
strut together with two rotations about the axes of the universal joint, ¢ and f. ¢ corresponds to the rotation
of the strut about 2 x axis and fj corresponds to the rotation about €y axis, see Figure 2b.

The alignment of the z axis on the fixed system with the axis of the rod can be accomplished using the
following three consecutive transformations, [7]: translation, t=(aj, bj, 0), rotation & about the current x axis

axis (2 x) and rotation £ about the current y axis (€ y).

The coordinates of P expressed in the global reference system are
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Figure 2. Degrees of freedom associated with one of the struts of a tensegrity structure.
a) Arbitrary point on the strut; b) Strut modeled as a universal joint.
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Substituting the above three expressions into (1) yields
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In addition to the constraint imposed that the lower ends are to remain in the horizontal plane and for
each strut to avoid the rotation about its longitudinal axis the following assumptions are made without loss
of generality:

e The external moments are applied along the axes of the universal joints.

The struts are massless.

All the struts have the same length.

Only one external force is applied per strut.

There are no dissipative forces acting on the system.
All the ties are in tension at the equilibrium position, i.e., the initial lengths of the ties are greater
than their respective free lengths.

The free lengths of the top ties are equal.

The free lengths of the bottom ties are equal.

The free lengths of the connecting ties are equal.
The stiftness of all the top ties is the same.

The stiffness of all the bottom ties is the same.

The stiffness of all the connecting ties is the same.

4. Coordinates of The Ends of the Struts

The Cartesian coordinates of the lower ends E;, expressed in the global reference system A, are
obtained in terms of the generalized coordinates substituting / in (6) by 0, and replacing a and b by aj, bj

Similarly the coordinates of the upper end of the struts 4 ; are evaluated by replacing / by the length of
the struts Ls in (6)
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Equations (7) and (8) permit one to obtain expressions for the lengths of the top, bottom and lateral ties
in terms of the generalized coordinates as follows

T.f = ((A,M,x - A,f,x )2 + (Aj+1,y _Aj,y)2 +(Aj+1,z N A/,z)z)l/z ©)
B, = ((E./H,x —E;. )2 + (EMJ, —E, )+ (E./'+Lz —E;. )Z )1/2 (10)
L./‘ = ((Aj‘x _E.fﬂ,x)z + (Aj‘y _E./+1,y)Z + (A/,z _Ej+1‘z )1/2 (1D

where if j=n then j+1=1

5. The Principle of Virtual Work for Tensegrity Structures

The virtual work for systems able to store potential energy can be stated from [6] by
W = oW, + oW, (12)

nc

where oW is the total virtual work, oWu is the virtual work performed for non-conservative forces and
moments and oW is the virtual work performed by conservative forces. oW can be represented as

W, = oW, + oW, (13)
where 6Wr is the total virtual work performed by non-conservative forces and oWy is the total virtual
work performed by non-conservative moments.

The virtual work performed by the conservative force j, oWy is oWy =—-90V; where OV, is the
potential energy associated with the conservative force j, therefore the total contribution of the
conservatives forces oW. is

oW, = —oV (14)
where oV is the summation over all the 6V present in the structure.
Substituting (13) and (14) into (12) yields
W = oW, + W, — oV (15)
In equilibrium the virtual work described by (15) must be zero [6], then the equilibrium conditions can
be deduced from

W, + W, — oV =0 (16)
6. The Virtual Work Due to the External Forces

As it is assumed that there is only one external force acting on each strut, the virtual work SWr
performed by all the external forces is given by

MWp= D F, - o, (17)
j=1

where F'; is the external force acting in the strut j and dr; is the virtual displacement of r;, this is the
vector that goes from the origin of the global reference system to the point of application of the external
force. If the distance between the point of application of the force and the lower end of the strut is L , see
Figure 3, then an expression for r; in the global system can be obtained from (6) replacing / by Lr and its
rectangular coordinates are

4 .
T LFjsm,B/+aj
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Figure 3. Location of the external force acting on the strut j.

The virtual displacements can be deduced from (18) where the derivatives are taken with respect to the
generalized coordinates ¢j, 5, aj and bj

Ao, da, + Ly cosf.op,
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Substituting (19) into (17), the general expression for the virtual work performed by external forces is
given by
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7. The Virtual Work Due to the External Moments

The virtual work performed by the external moments is given by

W, =Z;ng-o"£j+ﬂﬂj-5£j (1)
=
Provided that in this model of the tensegrity structure the external moments can be exerted only along
the axis of the universal joint, M., is collinear with de jand M s, is collinear with Jf ;, see Figure 4,
therefore (21) is simplified to

Wy = D M, 0%, + M, B, (22)
j=1

8. The Potential Energy

Since the struts are considered massless the term related to the potential energy in the principle of
virtual work is the resultant of the elastic potential energy contributions given by the ties. The potential
elastic energy for a general tie j is given by, [6]
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Figure 4. External moments applied to one of the struts of a tensegrity structure.

1
v, = Ek (wj—wjo)2 (23)
where 7 is the elastic potential energy for tie j, k the tie stiffness, w; the current length of the tie j and wjo
the free length of the tie j. Therefore the differential of the potential energy for tie j is
;= k (w,—w;,) ow, (24)

The differential of the potential energy for all the tensegrity structure, oV, is the resultant of the
contributions of the top ties, the bottom ties and the lateral ties and can be expressed as

v o= Ykl -nhr, + Y k(s -8, + Y k(L -1, (25)
j=1

Jj=1 Jj=1

where kr, ks, k. are the stiffness of the top, bottom and connecting ties respectively, 7o, Boand Lo are
the free lengths of the top, bottom and connecting ties respectively and 7;, B;jand L, are given by (9),
(10) and (11) and are functions of some of the generalized coordinates.

9. The General Equations

Now that each one of the terms contributing to the virtual work has been evaluated, the equilibrium
condition for the general tensegrity structure can be established. Substituting (20), (22) and (25) into (16)
and re-grouping yields
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Equation (26) must be satisfied for all the values of the virtual displacements which in general are
different from zero, then

f1i=0
fzfo G1)
f4n :0

where f; is given by equations (27) to (30). Equations (31) represent a strongly coupled system of 4*x

equations depending only on the 4*: generalized coordinates. The equilibrium position for a general
tensegrity  structure is  obtained by  solving  numerically  the set  (31) for
at, b, a, B, ... , an, bn, &n, [n.After that equations (7) and (8) yield explicitly expressions for

the coordinates of the ends of the struts in the global coordinate system.

10. Initial Conditions

To be able to solve (31) it is necessary to find a proper set of values for the generalized coordinates in
the unloaded position. This is accomplished using Yin’s method [1], which is presented here without proof.

k. (1—L—"j Ry — 2k (Rr - Ryp) sinl = 0 (32)
L 2
L, 4
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L 2
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where 7 is the number of struts.

The three unknowns Rs, Rr and the length of the connecting ties L are solved using equations (32)
through (34). These values are used to solve the following set of generalized coordinates for the unloaded
position.

a0 = Repcos( (j=1) 7)), j =1, 2, . , 1 (37)
bio = Rgsin( (j=1)y) , j =12 .. ,n (38)
R 1
tang,, = bjo—Rrsin( (j-1) y+a) (39)
H
@np,, = Ry cos( (].—1) y+a)—a;y (40)
bijo—Rrsin( (j-1) y+a)
sing;



where H = \/Lg - R} — R} - 2RBRTsin% 41)

andif j=1 then j—1=n

11. Verification of the Numerical Results

Because of the complexity of the equilibrium equations it is essential to verify the answers obtained.
An independent validation of the results can be accomplished using Newton’s Third Law. If there are no
external moments acting on an isolated strut, it is sufficient to perform the summation of moments with
respect to the lower end of the strut. If there are external moments the verification process involves more
steps and needs some additional concepts.

The unitized Pliicker coordinates of a line joining two finite points (x7, y1, zI) and (x2, y2, z2), as is the
case of the forces in the ties, can be written in the global reference system as, [8]

§-—L LM NP QR (42)
NI +M? +N?

where
1 1 1
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and
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The subindex / in (43) and (44) identifies the end of the tie attached to the current strut and the
subindex 2 is for the remaining end of the tie. Further the coordinates of the ends of the ties can be
evaluated using (7) and (8).

If L, M and N are simultaneously equal to zero (42) must be modified to

§-——>L oo r o Rl 45)

VPP +O* +R?
When an external force 4F; and its point of application are known, the Pliicker coordinates are
obtained by

p ‘F
o %]
Ly

—J
where 4 Fj corresponds to the external force expressed in the global reference system and 4r; is given by
(18).
The Pliicker coordinates can be expressed in a new system that is translated and rotated with respect to
the global reference system. If the new system is the C system, this is the system defined for the axes of the
universal joint, the expression that relates the Pliicker coordinates in the A system and the C system is, [8]

§ ="' "8 (47)
where
{RT 0, ]
e = (48)
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and 03 is a 3 by 3 zeroes matrix.

Figure 5 shows the free body diagram for an arbitrary strut modeled with a universal joint. In addition
to the forces in the ties there is an external force Fj which is known, a reaction force R passing through the
lower end and a reaction moment RM at the lower end. Newton’s Third Law expressed in Pliicker
coordinates in the C system is

CQ CQ CQ CQ CQ
Fygn Syam + Fygo Sy + Fyga Syma + Fgga Sgma + Fgga Sgga +

Foy Sy + 8, + M. Sue + M8+ 8, + 8, = 0 (51

The coefficients Fujaj+1, Fajai-1,--- represent the magnitudes of the forces in the ties Aj4j+1, Ajai-1-
and are given by k*(w-wo) where £ is the stiffness, w the current length and wo the free length of the tie.
The current lengths are given by (9) and (11) for the top ties and connecting ties respectively. It should be
noted that the magnitude does not depend of the reference system which is used.

The unitized Pliicker coordinates ©$ for each one of the ties can be calculated in the 4 system using (42)
thorough (44) and then converted to the C system using (47) through (50).

The Pliicker coordinates of the external force acting on the current strut § ., can be evaluated in the 4
system using (46) and then converted to the C system with the aid of (47) through (50).

Me and M p are the magnitudes of the external moments and their unitized Pliicker coordinates in the C

system are given by S =[0 0 0 1 0 0]"and S =[0 0 0 01 0]".

Since the reaction force ©$r expressed in the C system is a pure force and the reaction moment
€3 ru expressed in the C system is a pure moment they have the form [ “R« “Ry €R: 0 0 0]7and
[0 O 0 “RMx CRM, CRM:]7 respectively. Further they are the only unknowns in (51).

After expanding (51), rows four and five represent the components in the x and y directions of the
summation of moments about the lower end of the strut. A universal joint cannot exert moment along its
own axes. If after a numerical evaluation, RMx and RMy are both zero, then the equilibrium of moments is
maintained solely due to the forces in the ties and to the external loads (if any) and therefore the current
position is an equilibrium position.

Figure 5. Free Body diagram for an arbitrary strut modeled with a universal joint.
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12. Conclusions

The model developed here allows one to analyze a general anti-prism tensegrity structure subjected to a
wide variety of external loads.

The model is developed using the virtual work approach and all the results are checked using the
Newton’s Third Law. This verification assures one that the answers produced by the numerical method
accurately correspond to equilibrium positions.

Mathematical models for variations of the basic configuration of tensegrity structures such as the
reinforced tensegrity prisms might be developed following the same procedure presented in this research.
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