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ABSTRACT

A closed-form forward displacement analysis is performed for a Stewart Platform-
type of parallel mechanism, whose six legs. meet in a pair-wise fashion at three points in
the top and base platforms. The six legs and two platforms of this mechanism together
form an octahedron. An eighth degree polynomial in the square of the tan-half-angle that
measures the elevation of a triangular face of the octahedron relative to the base triangle
is derived. FEach of three vertices of the base triangle of the octahedron is modeled by a
spherical four-bar mechanism, and the polynomial is obtained by eliminating a pair of
tan-half-angular displacements from the displacement equations of the three spherical
four-bar mechanisms. The results are verified numerically by performing a reverse
displacement analyéis and displaying real solutions on a graphics system. It is clear that
there are a maximurr; of eight reflected pairs of real assembly configurations of the

octahedral form of the Stewart Platform.




INTRODUCTION

Over the past few years, there has been an ever increasing interest in direct
applications of parallel mechanisms to real-\;zorld industrial iproblems. In situations where
the needs for accuracy and sturdiness dominate the requirement of a large workspace,
parallel mechanisms present themselves as viable alternatives to their serial counterparts.
This paper is confined té the forward displacement analysis of Stewart Platform-type
parallel mechanisms. In the general sense, each of these mechanisms consists of two
platforms that are connected by six prismatic joints acting in-parallel. One of the
platforms is defined as the “top platform”. It has six degrees-of-freedom relative to the
other platform, which is the “base”. It is then required to compute all possible locations
(positions and orientations) of the top platform measured relative to the base for

arbitrary sets of six connecting prismatic leg lengths.

Stewart [1] introduced his platform in 1965 as an aircraft simulator. Since then,
many parallel mechanisms containing prisma.tpic joints have been called Stewart Platforms,
although Stewart originally suggested only ‘two different arrangements. Hunt‘['Z, 3],-
Mohamed and Duffy [4], Fichter [5], Sugimoto {6, 7], Rees-Jones {8], and Kerr [9] all
suggest use of Stewart Platforms, with various applications ranging from manipulators to
force/torque sensors. Reinholtz and Gokhale [10] (as well as Miura, Furuya, and Suzuki
[11], and Miura and Furuya [12]) investigated an interesting application in the form of
“Variable Geometry Truss Robots (VGT’s)”. It is apparent that NASA’s octahedral

VGT is in fact founded on the simplest of the Stewart Platforms.

Much of the research in the literature has devoted extensive effort to the reverse
displacement analysis that is inherently simple for parallel mechanisms (viz. it required to
compute a set of leg lengths given a desired location of the top platform relative to the

base). Few, however, have investigated closed-form forward displacement analyses for
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parallel mechanisms. Instead, they depend on purely numerical solutions. Behi [13]
investigated a forward displacement analysis of a parallel mechanism that closely
resembles a Stewart Platform. Numerically, he was able to find eight solutions. Reinholz
and Gokhale [10] used the Newton-Raphson technique to obtain an iterative solution for

the forward displacement analysis of a Stewart Platform.

A closed-form forward displacement analysis (as opposed to an iterative one) will
yield much important information on the geometry and kinematics of a parallel
mechanism. For instance, a closed-form solution for a Stewart Platform will not only
yield the exact number of real configurations of the top platform relative to the base for a
specified set of leg lengths but also quantify the effects of errors in leg 1éngths on the
position and orientation of the top platform.. Futhermore, a forward displacement
analysis of a Stewart Platform manipulator will provide a Cartesian controller with
necessary feedback information, namely the position and orientation of the top platform
relative to the base. This is especially important when the actual position and orientation
cannot be directly sensed, and when the majnipulator’s configuration is determined solely.
from lengths of the connecting prismatic legs. Near singularities, purely numerical
solutions may experience difficulties, since they provide no way to determine changes in

closure.

Additionally, in the field of force control, a forward analysis would provide the
necessary analytics to enhance the use of a Stewart Platform as a force/torque sensor. A
Stewart Platform design that is based on an in-parallel structure lends itself well to static
force analysis, particularly when utilizing the theory of screws [8, 9]. The wrench applied
to the top platform can be statically equated to the summation of the forces measured
along the lines of the six prismatic legs. Thus far, this particular application of the

Stewart Platform has depended on relatively “small” leg deflections, resulting in a
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“constant” configuration. However, employing a forward displacement analysis provides
the analytics to monitor gross deflections of the Stewart Platform and thereby permit one
to consider the design of a more compliant force/torque sensor. In other words, a
forward analysis will generate the geometry of the lines of the six connecting prismatic
legs of the Stewart Platform so that the effects of finite changes in leg lengfhs can be
related to the forces and torques (wrenches) applied to the top platform.

In this paper, a closed-form solution is presented for the forward displacement
analysis of a Stewart Platform whose six legs meet in a pair-wise fashion at three points
in the top and base platforms. (See Figure la.) In terms of solid geometry, this
structure is an octahedron having eight triangular faces. (See Figure 1b for a plan view.)
In terms of mechanisms, the top platform is supported by six SPS? serial chains that act
in-paralle]l. This means that there must be a pair of concentric and independent spherical
joints located at each of the vertices on both the top and base platforms. This Stewart

Platform arrangement will be refered to in this paper as a “3-3 Stewart Platform?”.

For the forward displacement analysri."s, the lengths of the six prismatic joints are_
given, together with the lengths of the edges of the top and base platforms. In other
words, all edges of the octahedron are known. It remains then to find all possible ways to
assemble the eight triangles, such that the edges of each triangle share the correct edges

of three adjacent triangles.

In order to solve this forward analysis problem, it was necessary to eliminate a
pair of unwanted tan-half-angles from a set of three simultaneous quadratic equations.
As far as the authors are aware, the eliminant for this set of equations has not been

A

'Here and throughout, the capital letters R, S, and P denote respectively,
revolute, spherical, and prismatic kinematic pairsa -

In an SPS serial chain, the prismatic joint (P) has an extra degree-of-freedom, a
rotation about the line joining the centers of its S pairs. This extra degree-of-freedom in
each leg does not affect the gross motion of the top platform.
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previously reported in the literature. Sets of equations of this type appear frequently in
the kinematic analysis of mechanisms, and hence it is considered that this general
eliminant will provide closed-form solutions to a number of other kinematic and geometric
problems. The expansion of the eliminant for the 3-3 Stewart Platform yields an eighth
degree polynomial in the square of a single tan-half-angle. It follows that £here are a
maximum of 16 real assembly configurations of this Stewart Platform. Because of the
reflections of the mechanism through the base platform, these assembly configurations are
grouped pair-wise. Therefore, there are, for a given set of leg lengths, a maximum of

eight reflected pairs of real solutions to this forward displacement analysis.

Pairs of concentric spherical joints may well present design problems by causing
interference between cointersecting connecting legs. It is thus of great importance to
eliminate, as far as possible, the use of concentric spherical joints. In this respect, the
solution for this 3-3 Stewart Platform is extended by construction to the solution of 2.6 3
Stewart Platform with a triangular top and. a hexagonal base. ({See Figures 2a and 2b.)
Each of the six serial chains is still modeled by an SPS sequence of joints. However, each.

pair of concentric spherical joints on the base platform have now been separated.

THE FORMULATION OF THE FORWARD ANALYSIS PROBLEM

Inherently, the base platform contains three spherical four-bar linkages. (See
Figure 3.) Here, the vertices on the base platform are o, p, and g, and the vertices on the
top are r, s, and t.2 In other words, each of the octahedron’s vertices that are in the
triangular base (o, p, and q) is the center of two concentric spherical joints that connect a

pair of legs to the base platform. Four lines radiate from each of these three vertices:

2This analysis is also valid when formulated from the top platform, specifically
using points r, s, and ¢t.
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two are platform legs, and the other two are sides of the triangular base. Af{ each vertex,
the four lines form, in a pair-wise fashion, four planes. When a sphere of unit radius is
centered at a given vertex, then the four planes through the vertex cut it in four arcs of
great circles. (Figure 4 shows q as a representative vertex.) These four arcs of great
circles form a spherical quadrilateral that is a skeletal model of a 4R spherical mechanism

with mobility one [14, 15, and 16].

A single, generalized spherical four-bar linkage is shown in Figure 5. The four
links, the output, coupler, input, and grounded links, are denoted respectively by the
angles, a5, ay3, 034, and a41.3 For this generalized spherical four-bar linkage, the input

angle is denoted by d,, and the output angle by 0,.

Refering back to Figure 3, one can associate three spherical four-bar linkages with
the generalized spherical four-bar linkage of Figure 5. The grounded links for these
spherical four-bar linkages are all attached to the base platform. They are, in fact, the
three interior angles of the triangle that forms the base platform. The coupler links for
these spherical four-bar linkages are angles contained in the triangles ors, pst, and qrt.
The input and output links are six angles taken from the three triangles that are known

to share edges with the base platform. These are the triangles ops, pqt, and qor.

Summarizing, twelve link angles are required to define these three spherical four-

bar mechanisms, and they are listed in Table 1.

Table 1. Link angles that define the three spherical four-bar linkages.

| Origin o p q |
Output, ay, Zqor Zops Zpat
Coupler, ay3 Zros ZLspt Ztqr
Input, az, Zsop Ztpq Zrqo
Ground, a4y £poq Zqpo Zoqp.

3The notation used here was employed by Duffy (16].




The cosines of these 12 angles are obtained via the cosine law for an interior angle of a
planar triangle. To adequately determine these link angles, it is necessary to account for
the signs of sines of these 12 angles. Firstly, the signs of the sines of the grounded links
are considered as known, since the location of the points o, p, and q aLre known.
Secondly, it will be seen that the input-output relation for the generalized spherical four-
bar linkage is not a function of the sine of the coupler link. This obviates the need for the

signs of the sines of the coupler links.

Lastly, the signs of the sines of the pairs of input and output links are not known.
Following Gilmartin and Duffy [17], this does not present a problem for a single four-bar
spherical mechanism. However, adjacent input and output links of the three spherical
four-bar mechanisms must be consistent in the signs of the sines. For instance, the sines
of the angles Zsop and Zops must either be both positive or both negative. The same
must be true for the pairs of angles (£tpq, Zpqt) and (Lrqo, Lqor). It will be shown

that selecting any of these eight combinations will yield identical assembly configurations. .

The input angle of one spherical four-bar is precisely the output angle for its
adjacent one. (Refer to Figure 3.) For instance, the input angle for the spherical four-
bar linkage at o is labeled fy. This angle, which is also the output angle for the spherical
four-bar linkage at p, is the angular elevation of the triangle ops relative to the base
platform. Analogously, 8; and fyx measure the elevations of triangles pgt and qor relative
to the base. The angles fx, fy, and 6, are defined as “fold angles”. For the three

spherical four-bar linkages, these fold angles can be related to 6, and 6, using Table 2.

Table 2. The input and output angles for the three spherical four-bar linkages.
[ Origin o p q |

Output, 8, By Oy 84
Illput, 94 ey GZ 9x.




Given 12 edge lengths for an oct;hedron that defines a 3-3 Stewart Platform,
applications of a cosine law for interior angles of triangles determine the 12 angles that
define the three spherical four-bar linkages. Once these three spherical mechanisms of
mobility one are defined, it remains to determine all possible sets of fold angles, namely
fx, By, and §,. For each triplet of fold angles, there is a unique asseml;ly configuration of

the 3-3 Stewart Platform.

THE SOLUTION OF THE FORWARD ANALYSIS PROBLEM

It has been established that it is necessary to compute the angles fx, fy, and 6; in
order to determine the position and orientation of the top platform relative to the base
platform of the Stewart Platform of Figure 3. These three angles are related through the

input-output relations for the three spherical four-bar linkages described above.

For the generalized spherical four-bar. linkage of Figure 5, the relationship between

the input angle (,) and the output angle (8;) is dependent on the output, coupler, input,
Sy
and grounded links, which are respectively, a5, ay3, 034, 2and a,;. This relationship is

(512 Ca1 534) €4C1 + (S12 541 C34) €1 + (541 534 €12) €4

— (812 534) 5451 + €23 — C1p €41 €34 = 0, (1)

where s;, = sin(a,,), ..., ¢4 = cos(f,). Clearly, this input-output relationship does not

contain the sine of the coupler link, a,3.
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It is convenient to introduce the tan-half-angle relationships for 8, and 6,:

1 — w? 2 w.

8.
J J J :
c. = ————= and §. = ———3— , where w. = tan (—) for j = 1 and 4.
Joo1+ wj2 Jo1+ Wj2 ’ J 2 )

Equation (1) then assumes the form
Aw§w§+Bw§+Cw§+Dw1w4+E=0, (2)

where the five coefficients for a single input-output relation are

A =815 C4p S34 — 512' S41 €34 — 841 S34 €12 + Ca3 — €15 €4y C34

B = — sy C41 834 — S12 541 C34 + S41 S34 €12 + C23 — €13 Ca3 Ca4
C = — 815 €41 534 T 812 541 C3a4 — S41 534 €12 + C23 — €12 C41 Cag4
D= — 45553

E =

= S1p C41 S34 T+ S12 841 C34 + S47 S34 €13 + Co3 — €13 C4p Cagq -

By an exchange of variables, Equation (2) can be used to obtain the input-output
equations for the three spherical four-bars on the base platform. Using the “o” columns

of Tables 1 and 2, Equation (2) can be expressed in the form

A1x2y2+B1x2+Cly2+Dlxy+E1=O. (3)
Here, the five coefficients A4, .... E, replace A, ..., E, where a5, ..., @3, are given by
Zqor, .... £Zpoq in the “o0” column of Table 1. Also, from the “0” column of Table 2, the

é
relations x= tan (Q)X) and y= tan (,—zy-) replace w; and w,. Analogously, the following

&
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two equations are obtained by respectively using the “p” and “g” columns of Tables 1
and 2.

Agz®x? + Byz? + Cox® + Dgzx + Eg =0 (4)
Agy?z® + Bgy® + C32° + Dgyz + Eg = 0. (5)

Now, the coefficients A,, ..., E5 and A;, ..., E3 replace A, ..., E of Equation (2), and the

third tan-half-angle relation z = tan (%) is introduced.

It is interesting to note that when all edges of the octahedron are equal, then all
of the triangular faces are equilateral, and all four links of each spherical four-bar
mechanism are 60°. Equations (3), (4), and (5) then reduce to xy=zx=yz=1/2. This
yields the unique solution 6x=8,=0;=70.53" for the regular octahedron, which is one of

the Platonic solids.

For the general case, it remains to eliminate y and z from (3), (4), and (5) and

v

obtain a polynomial in x. It is convenient to re-write (3) and (4) in the condensed form:

5 .
a1y +2byy+c¢; =0 (6)
a222+2b22+c2:0, (7T

where

— 2 _ _ 2
al_Alx +C1, bl_O.SDlx, Cl_le +E1,

ag = A, x2 + B,, b2 = 0.5 D2 x, and Coy = C2 x2 + EQ.
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The eliminant, A, of (5), (6), and (7) can be expressed in the form

A=a®—4p,, | (8)

where
o= 2A3B3a2c§c2—4A3B3c§b§+2A3c3a1clc§—4A3C3c§b§

—2A3Eja,ay¢c;¢ +4A3Eya; ¢ b3 + 4 Az Eja, ¢, b?

— 8A3E3b2b3 —~2A;Dgcycyby by —2B;C3a;aycc,

4+ 4 B3 Cyayc; b3 +4B;Cyaycyb? -8By Cyb2b3

+ 2By Ej;a; a3¢; — 4By Eya3 b2 —2B; Dya,cy by b,

+2C3E3a%a,¢c, —4Cy Ega? b2 — 2 Cy Dyaycyby by

——2D3E3a1a2b1b2—D§a1a2c1c2—A‘3?c§<:§

2.2 2 2 2 2 2.2 .2
— B3y ajc¢f — C3ajc; — E3ajaj

— 12
Py =b1 —a;c

— K2
pp = b3 — a, co.

When A vanishes, (5), (6), and (7) have simultaneous solutions in the variables y and z.
The equation A=0 is an eighth degree polynomial in x2. It follows that there are 16

solutions for x and a corresponding 16 pairs of solutions for y and z.

The 16 solutions are pair-wise reflections of eight solutions through the base platform.
There can be 0, 4, 8, 12, or 16 real solutions. Therefore, there can be 0, 2, 4, 6, or 8 pairs

of real, reflected solutions.
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NUMERICAL EXAMPLE

Here, a numerical example illustrates 12 real solutions, with six reflected through

the base platform. The edges were as follows:

[or 0s ps pt qt qr op Pq qo I st tr |

17.8 19.8 18 18 17 14.9 12 12 12 6 6 6

Only the ratios are important. The base and top platforms are equilateral triangles.

However, the leg lengths produce no further symmetry.

For this example, the following polynomial was obtained via the expansion of the

eliminant (A=0).

A=x 133 x4+ 734... x*2 - 2155... x° + 368.2... x°

— 374.1..x% + 220.4..x* — 69.0..x% + 8.8... = 0. -
This polynomial has the following 16 roots:

x = £0.862..., £1.078..., £1.395.., £1.382..., £1.701...4£1.922..,

(0.711... + i 0.017...), and (—0.711... + i 0.017...).

Figure 6 shows six real configurations. There are a corresponding six reflections of
these configurations through the base platform. It is interesting to note that five of these
six solutions produce concave octahedra. Only the second solution is of the convex form

that was depicted in Figure 1. These solutions correspond to the first six positive roots.
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In Figure 6, the origin of the coordinate system on the base is o, p lies on the x
axis, and q is in the positive xy plane. The origin of the coordinate system on the top is
r, s lies on the x axis, and t is in the positive xy plane. Relative to the coordinate system
on the base platform, the locations of the points r, s, and t are listed in Table 3. In order
to verify these results, a reverse displacement analysis was performed. All 16l solutions,
including complex ones, reproduced the correct edge lengths with at least 8 digits of
accuracy. Further, it was verified that identical solutions were obtained, whether the
signs of the sines of appropriate pairs of input and output links were taken as positive or

negative.
EXTENDED APPLICATIONS

Through construction, this same forward displacement analysis is directly
applicable to many other paralle]l mechanisms. For example, when the concentric
spherical joints on the base of the 3-3 Stewart Platform are separated but kept in the
same plane, the 6-3 Stewart Platform of Figure 2 is obtained. The same forward
displacement analysis described in this paper 'applies to this 6-3 arrangement. Stewart [1]-
originally proposed the 6-3 arrangement, describing it to be under “linear coordinate
control”. In his description, the base-end spherical joint of each‘ SPS serial chain was
shown as a Hooke joint. Substituting Hooke joints for spherical joints on the base
platform would remove the rotatability of any prismatic joint about the line that
connected its original spherical joints but would not affect the mobility of the top

platform.

Specifically, a 6-3 Stewart Platform can be modeled by a 3-3 Platform by
extending the sides of the hexagonal base as shown in Figure 7. The lengths of the edges
of the top platform. the locations of points o', p', and q', and the lengths of the six

connecting prismatic joints are known. Then, six “virtual” connecting leg lengths (o'r,
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o's, p's, p't, q’t, and q’r) can be uniquely calculated, creating a “virtual” 3-3 Stewart
Platform. Therefore, this 6-3 Stewart Platform is geometrically similar to the 3-3 version.
This was first noted by Fichter [5]. Furthermore, three pairs of concentric spherical

joints have been separated, without increasing the complexity of the mechanism.
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APPENDIX

The eliminant, Equation (8), of Equations (5), (6), and (7) was obtained by first
expressing Equations (6) and (7) in the forms -

2_-—(2b1y+c1)

, —(2 by z + cy)
yo = ay 22 = 2& 2

2

and

These forms of Equations (6) and (7) were substituted into Equation (5) to obtain the

following bi-linear expression:
a3yz+b3y+c3z+d3=‘0, (1)
where ag = 4 A3 b1 b2 + D3 aj ag ,
b3=2A3b1c2—2B3a2b1,
c3=2A3b2c1—-2C3a1b2,and
d3=A3clc2+E3a1a2—B3a201—C3a1c2.

Following this, the solutions to Equations (6) and (7) were expressed in the forms

— by £ — by
=__1T.‘IE and 2_2.5__@,
1 2

y (i)

where p. = bi2 — a; ¢;. Substituting (ii) into (i) and re-arranging yielded the expression
ag {77 {P5 + (dg 3199 — e3a1 by —bgag by +aghy by) =
(a3 by — by a2) (:1: m) + (a3 by — cg al) (:{: Jp_Q) . (iii)

Squaring both sides of Equation (i), re-arranging, and dividing throughout by the

extraneous factors a; a, yielded the expression

Qﬁmm =a, (iv)

where




—~ 2 by by (ag dg + by c3)

and

ﬂ:a3d3—b3C3.

The final form of Equation (8) was obtained by squaring (iv), moving the resulting left-
hand side to the right-hand side, and back-substituting the expressions for as, b3, Y and
d4 given in Equation (i).




Table 3. The results of the forward displacement analysis for the numerical example.

(Only the eight upper reflections are given. Figure 6 illustrates the first six data.)

[ X y z ]
Solution 1
r 3.09... 9.70... 14.5. ..
s 8.835 11.2... 13.7...
t 7.48... 6.00... 16.3...
Solution 2
r 5.94... 8.05... 14.7...
s 8.835 3.51... 17.3...
t 11.8... 8.50... 15.8...
Solution 3
r 9.08... 6.24... 13.9...
s 3.835 12.1... 12.9...
t 13.8... 9.69... 15.0...
Solution 4
r 8.97... 6.31... 14.0...
s 2.835 1.53... 17.6...

t 3.71... 3.83... 15.5...




Solution 5

Solution 6

Solution 7

Solution 8

11.1...

8.835

6.19...

8.835

13.2...

0.787...4+ 1 0.282...

8.835

4.35...4+ 1 4.84...

0.782... —10.282...

8.835

4.35...— 1 4.84...

5.02...

10.3...

5.26...

4.38...

5.54...

9.33...

11.03...— 1 0.163...

11.79...+ 1 4.01...

4.20...4+ 1 2.79...

11.0...4+ 1 0.163...

11.7...— 1 4.01...

12.8...
14.3...

16.2...

12.0...
16.8...

15.3...

13.9...
14.2...

16.7...

13.9...
14.2...

16.7...

i0.113...

i 3.33...

i0.113...

13.33...
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FIGURES
The 3~3 Stewart Platform,
The 3-3 Stewart Platform, plan view,
The 6-3 Stewart Platform.
The 6-3 Stewart Platform, plan view.
Three Spherical Four-Bar Mechanisms.
A Unit Sphere Located at q.
The Generalizéd Spherical Four-Bar Mechanism
Six Real Solutions to the Numerical Example.

Constructions For The 6-3 Stewart Platform.
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Six Real Solutions to the Numerical Example
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Figure 6. Six Real Solutioms to the Numerical Example (Cont'd.)
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