National Applied Mechanisms & Robotics Conference, Cincinnati, Ohio, Nov. 5-8, 1989, 89AMR-3A-3, Volume I. ## AUTONOMOUS RECTILINEAR MOTION PLANNING Part II: The Geometry of the End-Effector Workspace and Determination of a Free Path Meng-Dar Shieh Research Assistant Joseph Duffy Graduate Research Professor Department of Mechanical Engineering Director Center for Intelligent Machines and Robotics University of Florida Gainesville, Florida 32611 #### ABSTRACT In this second paper the analysis of the Reachable Area (RA) of the wrist point in the previous paper is extended to determine the RA of a point in the end effector for a single circular obstacle. A time-efficient algorithm was subsequently developed using the geometry of the manipulator workspace for determining a collision free rectilinear motion of the end effector of a planar 3R manipulator with a single circular obstacle inside the workspace. The algorithms developed for this work were successfully implemented using the Silicon Graphics 4D system. The execution time for determining the possibility of a rectilinear motion from an initial to a final position was within 1 second. If such rectilinear motion was not possible, the algorithm generated a path autonomously consisting of a sequence of line segments. The computer time of this was about 1 second. ## INTRODUCTION The Reachable Area (RA) of the end-effector facilitates the determination of motion capability simply because it enables one to check whether the target position lies within the RA or not. Obviously, if the target point lies within the RA of the manipulator, a rectilinear motion from the initial position to the final position is possible. However, if the target point lies outside the RA, the tip of the end effector of the manipulator cannot follow a rectilinear motion to the target point. In this case, the RA for the final configuration is determined, and an intermediate point will be suggested within the area created by the intersection of the initial and final RAs. However, it can occur that these two RAs do not intersect, in which case a free-path is determined using several intermediate points. The development presented here can be readily extended to determine paths with multiple circular obstacles present in the workspace. ### REACHABLE AREA OF END-EFFECTOR It is assumed that the manipulator executes a rectilinear motion with a constant orientation of the end-effector. The RA of the end-effector (point 4) (see Fig.1) is identical to that of the wrist (point 3) but is translated a distance $a_{34}a_{34}$ (see Lipkin, Torfason, and Duffy The shaded area, which is inaccessible [1]). to the end-effector because of the obstacle, must be subtracted from the translated RA. Figure 1 RA of the End-Effector. This shaded area is covered by the union of three shaded areas (m), (n), and (s) (see Fig. 2). ### Snaded Area (m) The shaded area (m) is bounded by four lines L_5 , L_6 , L_7 , and L_8 (Fig.2(a)). Lines L_5 and L_6 , passing through the centers of the obstacle C_{ob} and the virtual obstacle C_{ob} respectively, are selected to be perpendicular to line $\underline{O_bO_b}$ ' (or a_{34}). Lines L_7 and L_8 are two common tangent lines to the obstacles. If the origin is moved from \underline{O} to $\underline{O}_m = 0.5 \text{ x}$ ($\underline{O_b} + \underline{O_b}$ ') (the midpoint of line $\underline{O_bO_b}$ '), the line equations L_5 , L_6 , L_7 , and L_8 become L_5 ', L_8 ', L_7 ', and L_8 '. The shaded area (m) can be expressed by $$\overline{\underline{M}} = (\underline{L}_5'(\underline{X})<0) \wedge (\underline{L}_6'(\underline{X})<0) \wedge (\underline{L}_7'(\underline{X})<0) \wedge (\underline{L}_8'(\underline{X})<0) = 1$$ (1 Shaded Area (n) The shaded area (n) is the umbra of the real obstacle with respect to point 4 (Fig.2(b)). C_{ob} is the boundary of the obstacle. L_{p} is the polar of point P_{4} with respect to the obstacle. K_{p} is a degenerate conic, which represents a pair of tangent lines with respect to the obstacle. When the origin is moved from O_{c} to O_{c} , the parameters C_{ob} , O_{c} , and O_{c} , are changed into O_{co} , O_{c} , and O_{c} , $O_{$ $$\overline{M} = (C_{ob} * (\underline{X}) < 0) V[(L_{9}'(\underline{X}) < 0) ^ (K_{9}'(\underline{X}) < 0)] = 1.$$ (2) Shaded Area (s) The shaded area (s) is bounded by three lines N_2 (p_4O_b '), N_3 (p_4O_b), N_4 (O_bO_b ') and C_{3O} ' (Fig.2(c)). The line equations are transformed into N_2 ', N_3 ', and N_4 ' after the origin is shifted from O to O_4 = 0.5 x (0.5 x (O_b + O_b ') + O_a (the midpoint of the ray through point 4 which bisects O_bO_b '). The shaded area (s) is defined by $$M = (N_2'(\underline{X}) < 0) \land (N_3'(\underline{X}) < 0) \land (N_4'(\underline{X}) > 0) = 1.$$ (3) Figure 2 Determination of NAs (m), (n), and (s). Subtracting these three areas from the translated RA in (Fig.1) yields the RA of the end-effector (point 4). The calculations for these three shaded areas are thus completely analogous to those for the RA of the wrist (point 3) (see part I) and hence no further equations are required for this computation. Also, the translation of the whole RA of the wrist is determined by replacing \underline{X} with $\underline{X}-a_3\underline{a_3}$. The fast determination of the RA of the endeffector simplifies the motion planning problem among obstacles. INTERSECTION OF TWO REACHABLE WORKSPACES WITH RESPECT TO THE INITIAL AND THE FINAL CONFIGURATIONS When a starting point and a target point are specified together with the orientation of the end-effector, two configurations (the initial and the final) can be determined as shown in (Fig.3). An RA of the end-effector with respect to the initial configuration is constructed (see Fig.4) by using the algorithm given in the previous section. It is apparent that in this example the target point lies outside the RA of the initial configuration so that a single rectilinear motion of the end-effector is not possible and one or several intermediate points are needed to construct a path to the target position. In order to solve the problem, an RA of the final configuration is determined (see Fig.5). The intersection of these two RAs (Fig.6) is the region where intermediate points can be selected. When there is no intersection of these two RAs, it is necessary to move the robot to an intermediate position in the initial RA and to determine a corresponding intermediate RA which intersects the final RA. Figure 3 Initial and Final Configurations of a Planar 3R Manipulator. #### GENERATION OF A FREE PATH BETWEEN TWO POINTS An automatic search method to determine the intermediate positions is presented in this section. There are three distinct cases which are similar to the Cases (1), (2), and (3) discussed in Part I. # Computation of a free path for case (1) In this case the second link cannot be a tangent to the obstacle (see Case (1), Part I). There are three subcases which must be considered. Figure 4 RA of the Initial Configuration. Figure 5 RA of the Final Configuration. Figure 6 Intersection of the Initial and Final RAs. Case (1.1): The target position q_4 is in the umbra of the circle C_{3_1} . Two branch paths $p_4q_1q_4$ and $p_4q_2q_4$ (see Fig.7) can, however, be chosen as free paths. Two lines tangent to the circle C_{3_1} and passing through points p_4 and q_4 respectively are drawn (lines L_4 ' and L_5 ') which intersect at point g_1 . A two sided path $p_4g_1g_4$ thus satisfies the required motion. The two other tangents from p_4 and q_4 intersecting at g_2 also satisfy the required motion. The choice of the path may be determined by, for example, selecting the shorter of the lengths $p_4g_1q_4$ and $p_4g_2q_4$. Figure 7 Determination of the Collision Free Paths of Case (1.1). Case (1.2): The target position q_1 lies inside the shadow of the obstacle C_{ob} . In this case an intermediate point g_3 (Fig.8) is chosen so that the robot can move from point p_4 to q_4 through this point. Point g_3 is chosen at the intersection of two tangent lines (L_8 ' and L_9 ') to the obstacle C_{ob} . These two lines pass through points p_4 and q_4 respectively. Figure 8 Determination of the Collision Free Path of Case (1.2). Case (1.3): Points p_4 and q_4 and the center of the virtual obstacle $(O_b!)$ are on the same side of line $L_A!^1$. The first step is to move the end-effector away from the obstacle (from p_4 to $p_4!$) (see Fig.9). The next step is to move the end-effector from $p_4!$ to $q_4!$ (see Case (1.1) and (1.2)). The final step is to move the end-effector from $q_4!$ to q_4 . Points $p_4!$ and $q_4!$ are two intersections of line $L_A!$ and circle $C_{30}!$. Figure 9 Determination of the Collision Free Path of Case (1.3). ## Computation of a free path for case (2) In this case the second link can be a tangent to the obstacle and the obstacle lies outside the path of the first link (see Case (2), Part I). There are two subcases which must be considered. Case(2.1): The target position q, is in the shadow of the circle C_{3_1} ' or in the shadow of the obstacle C_{ob} . In this case the algorithm is identical to that in Cases (1.1) and (1.2). And points g_1 , g_2 , g_3 (see Fig 7 and 8) can be chosen as an intermediate point of the free path. Case (2.2): Point p, (or q_4) and the center of the virtual obstacle (Q_5 ') are on the same side of line L_2 '. Points h_1 and h_3 are the intersections of line L_2 ' and the circle C_{30} ' (see Fig.10). Point h_3 is chosen to be an intermediate point so that the end-effector of the robot can move from h_3 to q_4 in the final step. There are three possible choices for the intermediate point p_4 . The first one is point B^1 (an intersection of line L_2 ' and circle C_2 '). The second one is point h_2 , which is the middle point of line segment Bh_1 . This can be chosen to be an intermediate point when point B' is not available, viz. when B' lies inside the obstacle C_{ob} . The third choice is point h_1 . This can be chosen as an intermediate point when both points B' and h_2 are inside the obstacle. If point p_4 cannot move directly to any of these three points, points h_4 and h_5 on the circular arc e_1h_1 (see Fig.10) can be determined as the intermediate points of the free path $p_4h_4h_5h_1$ to point h_1 , where $e_1h_4=h_4h_5=h_4h_1$. Figure 10 Determination of the Collision Free Path of Case (2.2). # Computation of a free path for case (3) In this case link a_{12} can interfere with the obstacle during a specified motion (see Case (3), Part I). There are six subcases which must be considered. Case (3.1): The initial position p, and the target position q, belong to two different zones or point q, lies in the shadow of circle C_3 . Point g_3 , an intersection of the two tangent lines L_8 ' and L_9 ', is chosen to be an intermediate point (see Fig.11(a)). These two lines pass through points p_4 and q_4 respectively. Case (3.2): Obstacle C_{ob} lies in the path of the motion. Point g_4 (see Fig.11(b)) is selected to be an intermediate point which is the intersection of the two tangent lines L_4 ' and L_8 '. Case (3.3): Point q_4 lies in the shadow of the virtual obstacle $C_{\rm obs}$. Point g_5 (see Fig.11(c)) is chosen to be an intermediate point so that the robot can move from p_4 to q_4 through point g_5 . Point g_5 is the intersection of the two tangent lines L_6 ' and L_7 '. ¹ Line L_A ' (see Fig.9) is a tangent line to the virtual obstacle C_{ob} ' with the tangency between points O_b ' and O', and is perpendicular to line $O'O_b$ '. $^{^2}$ L_2 ' is tangent to the virtual obstacle C_{ob} ' at point e' and intersects circle C_2 ' at B' where e'B' = a_{23} (see Case (2), Part I). $^{^3}$ Point e_1 is an intersection of line L_1^\prime and the circle C_{3O} , which is closest to the virtual obstacle C_{ob}^\prime . Line L_1^\prime is drawn from O' and tangent to C_{ob}^\prime on the right side. Figure 11 Determination of the Collision Free Paths of Cases (3.1), (3.2), and (3.3). Case (3.4): Point p_4 and the center of the virtual obstacle (O_b^+) are on the same side of line L_2^+ . It is necessary to chose an intermediate point on line L_2^+ so that the algorithms in Cases (3.1), (3.2), and (3.3) can be used. At the outset, there are three choices for the intermediate point p_4^+ (points B^+ , h_2 and h_1). These are identical to those discussed in Case (2.2). However, the choice must depend on where the target position q_4^- is. For example, when the initial and final configurations are in zone(I) (see Fig.12), point B' is the best choice for an intermediate point. Then the determination of the rectilinear motion from B' to \mathbf{q}_4 is identical to Case (3.1) through Case (3.3). The second choice is point \mathbf{h}_2 , which is the middle point of line segment \mathbf{Bh}_1 . This can be chosen to be an intermediate point when point B' lies inside the obstacle \mathbf{C}_{ob} . If the initial and final configurations If the initial and final configurations belong to two different zones, point h_1 is the best choice for an intermediate point. Figure 12 Determination of the Collision Free Path of Case (3.4). Case(3.5): Points q_4 and Q_5 ' are on the same side of line L_2 '. Point q_4 ', an intersection of line L_2 ' and circle C_{20} ', is chosen to be an intermediate point, which is the nearest to the target point q_4 (see Fig.13). When the robot cannot move from q_4 ' directly to point q_4 , an intermediate point h_3 on circle C_{20} ' is chosen to generate a free path from q_4 ' to q_4 , where q_4 ' $h_3 = h_3e_1$ ' 4. Figure 13 Determination of the Collision Free Path of Case (3.5). O O_b < a_{12} - $(a_{23}^2+r^2)^{1/2}$, line L_2 ' does not exist. When ⁴ Point e_1 ' is an intersection of line L_1 * and the circle C_{30} ', which is closest to the virtual obstacle C_{ob} '. Line L_1 * is drawn from O' and tangent to C_{ob} ' on the left side. Line L_c ' is determined (Fig.14), which is tangent to the virtual obstacle C_{ob} ' and is perpendicular to line $\underline{O}'\underline{O}_b$ ' with the tangency between points \underline{O}' and \underline{O}_b '. The determination of the intermediate points is identical to those in Cases (3.1) through (3.5). Figure 14 Determination of the Collision Free Path of Case (3.6). # SIMULATION OF THE ALGORITHM OF THE OBSTACLE AVOIDANCE OF A PLANAR 3R ROBOT The obstacle avoidance algorithms developed in this paper have been successfully implemented using the Silicon Graphics 4D system in CIMAR Laboratory. The link lengths of the planar 3R robot were selected as follows $a_1 = 30.0$ units, $a_2 = 15.0$ units and $a_3 = 10.0$ units. a₃ = 15.0 units and a₃₄ = 10.0 units. Figs. 15 and 16 show the results of the rectilinear motion planning for case(2) and case(3) respectively. The algorithm generates a path autonomously and it takes about 1 second of the computer time in the Silicon Graphics 4D system. Figure 15 Collision Free Path of Case (2). Figure 16 Collision Free Path of Case (3). # CONCLUSION AND FUTURE WORK A time-efficient algorithm concerning the motion planning of a planar 3R robot with an obstacle inside its workspace has been developed. An effective checking procedure without using the stepped-move approach and the swept-volume calculation is applied to enable a fast determination of a free path around the obstacle. Further studies could elaborate this algorithm; for example, multiple obstacles inside the workspace. In this case the RA of a robot configuration can be defined as the common area of the RAs of different obstacles. An important extension of this algorithm is its applications in articulating the links of some spatial robots to guide the end-effector through horizontal tubes or piping. # ACKNOWLEDGEMENT The authors wish to acknowledge the financial support of the Department of Energy (Grant No. DE-FG02-86NE37967). ## REFERENCES 1. Lipkin H., Torfason L. E., and Duffy J., "Efficient Motion Planning for a Planar Manipulator Based on Dexterity and Workspace Geometry," <u>Conference on Mechanisms and Machinery</u>, Cranfield Institute of Technology, Cranfield, United Kingdom, September 1985.