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ABSTRACT

This is the first of a series of papers
which develop a time efficient algorithm for
the ‘rectilinear motion of a point in the end
effector of a planar 3R manipulator with
multiple circular obstacles in the workspace.
The algorithm can be used to guide 3R
manipulators and a snake robot which can ke
modeled by a sequence of 3R manipulators through
horizontal pipes with circular cross-sections.
Further, the algorithm can be modified to guide
Puma and T°776 robots through horizontal pipes
with circular cross-sections. The time of
execution of the algorithm for a single 3R
manipulator using the Silicon Graphics 4D system
for single and multiple obstacles is within 1
second and 3 seconds respectively. In this
first of the sequence of papers, the geometry
of the wrist workspace with a single obstacle
is considered.

INTRODUCTION

The goal of this study is to establish a
time-efficient algorithm which will allow a
planar 3R robot to reach a target point while
avoiding a circular obstacle 1inside the
workspace. It is required that the tip of the
manipulator move along a straight line with a
constant orientation of the end-effector.
First, the Reachable Area ( RA ) of the wrist
is determined when a circular
obstacle is placed inside the workspace.

The present algorithm, which is based on
the geometry of the manipulator and the location
of obstacles, is different from the hierarchical
approach developed by Udupa {1]. It is also
different from the geometrical approach of
Lumelsky (2] and the approcach based on the
artificial potential field by Khatib [3]. Other
algorithms concerned with motion planning and
obstacle avoldance using free space have been
suggested by Perez ([4,5] and Brooks [6]. More
recently Young and Duffy [7,8] and Chen and
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Duffy {9,10] have comprehensively discussed the
parallel operation of robots and interference
avoidance motion planning.

REACHABLE AREA OF THE WRIST

The geometry for deriving the RA of the
wrist ! depends on the distance d between the
center of the obstacle and the first joint of
the robot, the dimension of the links, and the
radius r of the obstacle. There are essentially
three distinct cases which must be considered
(see Fig.1):

Case (1): d > a, + (ap~+rd) For this
case link a, cannot be tangent to the obstacle,
and it follows that part of the arc of the
obstacle which lies inside the circle Cy, can be
reached by the wrist point. Further, link a,
cannot touch the obstacle.

Case (2): r + a, < 4 < a, + (ay + )2
For this case link a, is tangent to the obstacle
and the obstacle lies outside the circle C,. It
follows that the part of the arc ee, of the
obstacle which lies inside the circle Cy, cannot
be reached by the wrist point. Again link a,
cannot touch the obstacle.

Case (3): r <d £ r + a,. For this case
either the obstacle intersects C, or the
obstacle lies within C,, and in either case link
a, can interfere with the obstacle during a
specified motion. If this occurs, then
obviously the motion is not possible.
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! It is assumed throughout this analysis

that the robot doces not change its configuration
viz. the algorithm is developed here for the
robot in the elbow up position (0<8,<180 deg.).
A similar algorithm can be easily developed for
the elbow down position. These pair of
algorithms form a basis for developing a further
algorithm which makes use of the change of
configuration to avoid obstacles.
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Fig.l Determination of Cases (1), (2), and (3).

Computation of RA for Case (1)

The outer boundary of the workspace of the
wrist (see Fig.2) is C,5. The wrist cannot move
in the three shaded areas (a), (b) and (c),
which are denoted as Nonreachable Areas (NA)s
of the wrist in the following discussion. NA(a)
is defined by the central limit circle C; which

is the inner boundary of the wrist point, and
is represented by a logical variable
M=(Cy(X)<0) V [(Ly(X)<0)"(K(X)<0)] = 1. (1)

This equation shows that any point X inside
NA(a) must lie either inside C; (for which
C4(X)<0) or inside the area bounded by the pair
of tangents K, from point 3 to the circle Cy,
the line L, through the points of tangency, and
the arc of C,, bounded by the tangents K, (see
Lipkin, Torfason and Duffy [11]).

The NA(b) defined by the obstacle ¢, can
be determined analogously by the logical
variable

M=(C,' (X)<O)V[ (L' (X)<0)"(Ks' (X)<0)] = 1. (2)
Since the origin of the new coordinate system
is shifted to O, (the center of the obstacle),
the tangents K, from point 3 to the obstacle and
the line L; through points of tangency are
denoted by K;' and L' respectively.

Clearly, the outer annulus, NA(c), is
inaccessible to the wrist, and the RA of the
wrist can be determined by deleting these NAs
from the wrist workspace. The derivations for
the NA(a), NA(b), and NA(c) for Cases (2) and
(3) are identical to Case (1). However, because

the obstacle in Cases (2) and (3) 1is in
different locations, additional further
nonreachable zones must be computed.
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Fig.2 Determination of NAs (a), (b), and (c).

Computation of RA for Case (2)

In addition to the NA(a), NA(b), and NA(c),
a further NA which cannot be reached by the
wrist for the existence of a pair of coupler
curves should be deleted from the wrist
workspace (see Case (2.1) for more detail).

The analysis can be simplified by
determining at the outset the position p, of the
wrist point relative to the obstacle. This is
accomplished by drawing three lines L,, L,, and
I, which divide the workspace into three
different zones (I), (II), and (III) (see
Fig.3). L, is drawn from O and is tangent to
the obstacle on the right side to the obstacle
at point g, °. L, is tangent to the obstacle at
point e and intersects circle C, at B ’ where eB
L, passes through the points of contact
g, and e.
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Fig.3 Determination of Zones (I),
(1III).

(II), and

According to the location of the wrist
point, three distinct situations are considered
as follows.

Case (2.1): The wrist point p, is in
zone(J) (see Fig.4). Suppose that joint 2 is
initially coincident with A and 1link a, is
tangent to the obstacle. As joint 2 moves from
A to B with a, maintaining tangency, the wrist
will trace a coupler curve from e, to e,. This
motion can be modeled by a planar RRRP mechanism
(Duffy ([12]). Points e,, e, and two other
intermediate points e, and e, are introduced and
the coupler curve 1is approximated by the
sequence of line segments ee,, e,e;, and g;e,. The
points e, and e, are determined by choosing the
points D, and D, on the arc AB, where AD,=D,B and
AD,=D,D,. Point 3 is coincident with points e, and
e,, when joint 2 is coincident with points D, and

2

Figure 4 1is drawn for the robot in the
elbow up position (0<8<180). If the robot was
in the elbow down position (-180<850), the

tangent line to a point g,'
would be used.

on the left side

’ If L, intersects the circle ¢, at two

points, the intersection which is on the right
hand side of the obstacle and eB = a,, is chosen.
Further, if d'sS(aptr)‘+a,’, it is preferable to
use the line which is common tangent to both the
obstacle and the circle C, as the line L,.



D, and the link a, is tangent to the obstacle.

Lines through pse,, pe,, p;e; and p,e, can
now be drawn which divides the NA bounded by C,
and the line segments ge,, e,e; and e,e, into
three parts (s;), (s,) and (s,;). For convenience
the lines through p.e;, p;e, and ee, are labeled
by N,', Ng' and N'. A new coordinate system
with origin 0' is chosen on the midpoint of the
ray through p, which bisects ee,, and

Q' =[0.5x (e +e)+n]1x0.5 (3)

This choice ensures that any point within NA(s,)
is on the same side of Q' as the lines N,' and
Ns;' but on the opposite side of 0' as the line
N,', which in turn facilitates the
identification of points 1lying within the
NA(s;). Such points can be easily determined by
the logical variable

M= (N,' (X) <0)~ (N’ (X)<0)~ (N¢' (X)>0)=1. (4)
Further, points in NA(s,) and NA(s,;) can be

identified using (3) and (4) by replacing
(e,,e,) with (e,,e;) and (e,,e,) respectively.

fechanism
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Fig.4 Determination of NAs (s;), (s,), and (s,).

Case (2.2): The wrist point is in zone(II)
(see Fig.5). This case is the same as Case (2.1)
above. The points e;, e,, e, and e, are replaced
by £, £,, f; and f,, and in this way equations
(3) and (4) can be used to define the NAs.
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Fig.5 Determination of Case (2.2).
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Case -(2.3): The wrist point is _in
zone(IIT). The union of the NAs, which are
determined from Cases (2.1) and (2.2), yields
the NA for this case.

It remains to delete the NAs from the wrist
workspace which will generate the RA of the
wrist for Case (2).

Computation of RA_ for Case (3)

In addition to the NA(a), NA(b), and NA(c)
computed in Case (1), several other NAs must be
considered. In this case the wrist workspace is
divided into two zones (I) and (II) by a line
L, which passes through Q, and O (see Fig.6).

According to the locations of the wrist
point and the obstacle, five distinct situations
must be considered as follows.

Case (3.1): The wrist is in zone(I) and
(a+rY?<d<a, +r. In this case, L, drawn from O
is tangent to the obstacle on the right side at
the point h, (see Fig.7) and intersects the
circle C, at the point A, which is closest to
the tangency h,. And h; lies outside C,. The
derivation of the NA (t,) and (t;), which are
bounded by the coupler curves e,e; and e,e;, the
rays from point 3, and the arc of Cy, is the
same as that for Case (2.1).

The NA(t,) is bounded by the circular arcs
e,e, and e¢e,, and by the lines L,', L' and L,'
through p;e,, pe, and ge,. A new coordinate
system with the origin Q' is chosen on the
midpoint of the ray through p, which bisects
e8,, and

Q' = (0.5x%x (g +&) +D) x0.5. (5)

This choice ensures that any point X within

NA(t;) is on the same side of Q' as lines L'
and L;' but on the opposite side of Q' as the
line L,'. Further, it ensures that the distance

from the point X to the point A must be greater
than ay, i.e., that is Xa>a,. This in turn
facilitates the identification of points lying
within the NA(t,). Such points can be easily
determined by a logical variable

ﬁ=(XA>an)A(15'(K)<0)A(15'(X)<0)A(In'(K)>0)=l,(6)

Fig.6 Determination of Zones (I) and (II) in
Case (3).



Fig.7 Determination of NAs (t,), (t,), and (t;).

Case (3.2): The wrist is in zone(I) and
(ap=a,) +r<d’<(a,+r) . In this case, L, is drawn
from O and is tangent to the obstacle on the
right side at point h, (see Fig.8). Here h, lies
between C, and Cj. The circular arc e,e,, the
two coupler curves e,e, and e,e;, and the circle
C,, together with the rays from point 3 bound
and divide the NA into three parts (u,), (u,) and
(u,) . The derivation of the NA(u,), NA(u,) and
NA(u,) is the same as that in Case (3.1).
However, the location of NA(u,) is different
from that of NA(t,;) shown in Fig.7.

d=((ajp-eggP+r?)*—

Fig.8 Determination of the NAs of Case (3.2).

Case (3.3): The wrist is in zone(T) and
r<d<((ap=an)+r’)”.  In this case, L,' is drawn
from O and is tangent to the obstacle on the
right side at point h,, and point h; lies inside
C;. The NA (see Fig.9) is bounded by the arc of
the circle C,,, the semicircle e,e,, and the
lines Lg' and L,' through p;e, and p,e,. The
center of the semicircle is at point A and the
radius is a,;. Three figures are drawn separately
in order to identified NA(v,), NA(v,) and NA(v,)
which are defined by the different locations of
the wrist point p,.

When the wrist point is outside the area
bounded by the semicircle ee, and the line L;'
(see Fig.9(a)), the NA(v,) is defined by

M= (XA>ayn) ~ (L' (X)<0)~(Ly' (X)<0) " (L,' (X)>0)=1.

(7)
The origin of the new coordinate system is given
by 0'=0.5x(0.5x(g,+e,) +p;) - Equation (7) is
identical to equation (6) with lines L', L'
and L,' replaced by Ly', L' and L;'.

If the wrist is inside the semicircular
area (see Fig.9(b)), the NA(v,) is bounded by
C,o, the semicircle ee, and lines L;' and Ly’
through p;e; and p;e,. A new coordinate system
with origin O' is chosen on the midpoint of the
ray through p; which |Dbisects gg,, and
0'=0.5x(0.5x(g,+8,) +p;) . This choice ensures
that any point X within NA(v,) is on the
opposite side of Q' as lines L;' or L,', and the
distance from the point X to the point A is
greater than a,, that is XA>a,;. This in turn
facilitates the identification of points lying
within the NA(v,). Such points can be defined
by a logical variable

M=(¥A>a,) A [(L' (X}>0) V (L' (X)>0)]=1. (8}

If the wrist is exactly on line L,' (see
Fig.9(c)), the origin is shifted from QO to Q,.
The NA(v;) is bounded by C,;, the semicircle e,
and the 1line L,'. The origin of the new
coordinate system is shifted to Q, so as to
ensure that any point within NA(v,) 1is on the
same side of 9, as line L,', and the distance
from the point to the point A is greater than
a,;, that is XA>a,, which in turn facilitates
the identification of points lying within the
NA(v,;). Such points can be defined by

M=(XA>ay) ~ (L,'(X)<0) = 1, (9)
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Fig.9a Determination of NA (v,).
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Fig.9b Determination of NA (v,).
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Fig.9c Determination of NA (v,).

Case (3.4): The wrist is in zone(II) and
(a+r’)?<d<a, +r. In this case, L, is drawn from
0 and is tangent to the obstacle on the left
side at point h, (see Fig.10). And h, lies
cutside the circle C,. L, intersects the circle
Cy, G, and Cy; at the points e;, A, and e,
respectively, which are closest to the tangent
point h,. It is convenient to determine the NA
by introducing a virtual obstacle C,,', whose
center is g, * and radius is ge,.

The NA bounded by C,,', the tangents K, ' from
point 3 to the virtual obstacle, and the line
L.w' through points of tangency is defined by a
logical variable

M= (Copy ' (X) <0) V[ (Lo, " (X) <0) * (Ko ' (X)<0) ]=1, (10)

where the origin of the new coordinate system
is shifted to g,. Equation (10) is the same as
equation (1) with ¢, L, and X, replaced by
Comw' s Low' and K,,'.

* circle ¢, intersects the obstacle C, at

two peoints, and the intersection which is
nearest to the point h, is chosen to be point
gs-

z>——7—/ obstacle
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Fig.1l0 Determination of the NA of Case (3.4).

Case (3.5): The wrist is in zone(TI) and
r<d<(a,+r)>. In this case, L, is drawn from
0 and is tangent to the obstacle on the left
side at point h,. And point h; lies inside the
circle C, (Fig.1l1l). L, intersects the circle ¢y,
C,, and Cy, at the points e,;,, A, and e
respectively, which are nearest to the tangent
point h.. The NA of this case can be determined
by introducing a virtual obstacle C_ ', the
tangents K,,' from point 3 to C,,', and the line
L.,' through points of tangency. The center of
Cuv' 1s at point A and the radius is a,;. Hence
equation(10) can be used again to determine the
NA.

It remains to delete the NAs from the wrist
workspace which will generate the RA of the
wrist.

obstacle

Fig.1ll Determination of the NA of Case (3.5).
CONCLUSION

In this paper, workspace geometry is
employed to determine the motion capability of
the wrist point of a planar 3R manipulator with
a circular obstacle inside the workspace. This



constitutes the foundation for determining the
Reachable Area of a point in the end effector.
Following this procedure an algorithm is
developed for determining a free path of a
planar 3R manipulator to avoid a single circular
obstacle and subsequently multiple circular
obstacles.
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