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Optimization of Ring Trusses for Antenna Structures
Using Line Geometry
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Two types of trusses were optimized using the simple, yet powerful, mathematical technique of employing line
geometry as defined by the mathematicians Plucker and Grassmann. The key benefit to this design methodology
is simplicity. Multiple-node designs were analyzed, with particular focus placed on the triangular truss. The
methodology is based on a geometric stability criterion called the quality index. This approach allowed for a
simple equation to be created that identifies the optimal geometry based on the exterior angles and the number.
of sides. Trusses with single and double connecting points are considered using the quality index. An example of
a double connection truss is the triangular truss. In this case, each node (either on the top or the base) has two
structural elements connecting to the other nodes. It is shown that there are optimal design criteria for the upper,
lower, and separation dimensions. These optimal geometric designs yield conical trusses. Further consideration of
the 3-3 truss produced a closed-form solution. This equation holds significant potential for truss designs, providing

a clear comparison between single and double connections.

Introduction

HE objective of this study was to create a design method-

ology for novel space structures that employs line geometry
concepts developed in the late 19th and early 20th centuries' as
developed by the mathematicians Plucker and Grassmann. The mo-
tivation was to create new, lightweight space structures, using as a
starting point optimal geometric/static stability criteria derived from
line geometry.>3 In this paper, the optimization process is developed
by simple construction.

Two examples of existing trusses, which secure antennas, are
shown in Figs. 1 and 2. The upper circular truss ring is connected to
a lower ring by a redundant structure of connecting struts. It is the
design of this truss ring that is the major object of this study.

Figures 3a-3c show regular planar polygons. A circle is drawn
through the vertices of each polygon. These circles can be used to
make the circular truss rings that carry the antennas. Each vertex or
node of a polygon can be considered to be a single connecting point
(one strut), a double connecting point (a pair of struts), or a triple
connecting point (three struts), as shown in Fig. 3.

Background

The vector equation for a point can be expressed in terms of the
Cartesian coordinates as

(1

These coordinates can be written x=X/W, y=Y/W, and
z=Z7Z/W (Ref. 4), which expresses the point in terms of the ho-
mogeneous coordinates W, X, Y, and Z. A point is completely
specified by the three independent ratios, X/W,Y/W,and Z/W,
and therefore, there are 00> points in three space.’

r=xi+yj+zk
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Similarly, the equation for a plane can be expressed in the form

D+ Ax+By+Cz=0 2)
or in terms of the homogeneous point coordinates by
DW 4+ AX+BY+CZ=0 3)

The homogeneous coordinates for aplaneare D, A, B, and C, and
a plane is completely specified by three independent ratios A/D,
B/D, and C/D. Therefore, there are 0o? planes in three space. It is
well known that in three-space the plane and the point are dual.
When Grassmann’s (see Ref. 6) determinate principles are used,
the six homogeneous coordinates for a line, which is the join of two
points (x|, y1, z1) and (x2, ¥2, z2), can be obtained from the 2 x
X1

4 array
1 Zy
1 X2 V43

by calculating all of the 2 x 2 determinants of the 2 x 4 array as

1
»

©)

1 x 1 1 z
L= ", m=[ ", w~=| ©
1 X2 1 y2 1 2y
z 7 X X
P= y1 1 , 0= 1 1 , I = i N G)
Y2 Iy 2 X2 X2

The six homogeneous coordinates, L, M, N, P, Q, and R, or
S, and Sp are superabundant by two because they must satisfy the
following relationships: -

§-S=L 4+ M*+N?=d" (6)
where d is the distance between the two points and
§-S=LP+MQ+NR=0 Q)

which is the orthogonality condition. Briefly, as mentioned, the vec-
tor equation for a line is given by r x § = Sy. Clearly, § and S, are
orthogonal because S - Sy =S -7 x S =0. A line is completely spec-
ified by four independent ratios. Therefore, these are oo* lines in
three space.
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Fig. 2 Exploded tension truss design.

The quality index, or geometric stability index, for a parallel-
legged structure is defined as a number between 0 and 1, derived
from the determinant of the Jacobian matrix comprising the lines
between the upper and lower surfaces.’ In the case of a 3-3 device
(where there are three nodes on the upper surface and three nodes
on the lower surface), the Jacobian is a square matrix (6 x 6) that
can be written as

S 8 8 8 8 §
I 1 I
50 50 50 5 50 30

The determinant for this square matrix is a function based on the
geometric variables describing the structure (Fig. 4). These variables
are a for the side length of the upper surface, b for the side length of
the lower surface, and % for the distance between the surfaces. Ob-
viously, for equilibrium, there must be at least six connecting struts
for a three-dimensional structure (with six degrees of freedom). It
is well established that five or fewer connecting struts will not fully
constrain a pair of rigid bodies.

The quality index” is defined as

_ |detJ|
“|detJn|’

0<ic<l 9

where J is the aforementioned 6 x 6 Jacobian matrix of the coor-
dinates of the six connector lines and J,, is the matrix when the
platform is in an optimum, most geometrically stable position. The
quality index has two clear meanings so far. When A = 0, the octahe-
dron is in a stable singularity and will degenerate or collapse under
aload. When A = 1, it is in an optimal configuration to sustain loads.
However, when A is neither zero nor one, it is hard to say exactly
how much one configuration is better than another. One cannot say
that a configuration with A = 0.8 is twice as good as a configuration
with A =0.4 without further analyses. However, the quality index

a) Single connecting points

b) Double connecting points

¢) Triple connecting points
Fig. 3 Geometry of connecting points.

4,
v

B,

Fig. 4 Double connecting 3-3 truss.

helps to design platforms by setting dimensions that give the best
quality index, A = 1. Also, it gives an idea of certain designs that
must be avoided because they would lead to zero or very low-quality
indices.

Optimization Methodology

The optimization methodology presented here stems from the
work in line geometry and the quality index. Specifically, these cal-
culations provide a design-independent metric to describe geometric
stability. Simply put, when the quality index reaches 0, the matrix
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is in a singularity and. therefore. unstable. Because stability is not
a go/no-go function. it is useful to have a gradient scale value to
describe it.

This paper expands the use of the quality index to include the
number of connection points or nodes in the upper circular ring
(UCR), which are joined to an equal number of connecting points
in the lower circular ring (LCR) by a series of struts. For example,
a 3-3 truss means there are three connecting points in the UCR and
three connecting points in the LCR. As a further example, a 66 truss
means there are six connecting points in the UCR and six connecting
points in the LCR. Figure 3a, shows an arrangement of six single
connecting points. Figures 3b and 3¢ show a construction of poten-
tial redundant structures containing 12 and 18 connecting struts.

In general, if there are 3, 4, 5, 6, 7, §, ..., connecting points
in the UCR and LCR, a design will be based on optimizing the
geometry that is formed by connecting pairs of equilateral triangles,
squares, and regular polygons (pentagons, hexagons, etc.). Previous
work’ has shown that symmetry is required for the upper and lower
surfaces. Clearly, for numbers of connecting struts greater than six,
the truss will be a redundant structure because six reactions are
required for six degrees of freedom, but this does not present a
problem in the optimization process.

It is well known that the sum of the exterior angles of a planar
polygon is 360 deg. For a regular polygon for which each side is
equal and each exterior angle 8 is equal, then 8 = 360/n. When this
information is used, it is a relatively simple task to construct any
regular polygon, and it was useful in the construction of a standard
function to describe these structures.

Ring Truss Optimization with Double Connecting Points

Consider initially a 3-3 truss in which the UCR and LCR are
equilateral triangles located in parallel planes and connected by six
struts B\ Ty, B\ T, B, 1>, B, T3, B; T, and B;Ty, as shown in Flg 4,
The upper and lower triangles have sides with lengths a and b,
respectively. The corresponding pairs of sides (T, T,, B, B,), (T; T3,
B, Bs), and (15T, B3B)) are parallel, and the relative rotation angle
¢ between the triangles is zero (as shown).

The quality index can be expressed as a function of ¢, a, b, and
h, and values for these parameters are determined to obtain the
optimal quality index A = 1. The optimum configuration, A = 1, oc-
curs at ¢ =60 deg, and when ¢ = b, we obtain the Star of David
as shown in Fig. 5. The distance # between the planes can be
computed for any ratio b/a. Note that the plan view illustrates
the true sides of the upper (T17,T;) and lower (B B, B3) triangles
for which T1T2 = T2T3 = T3T1 =a and 3132 = BQB3 = B331 =b,
where a = b. Furthermore, the connectors BT, B,T,, B;T5, ...,
do not lie in the planes perpendicular to the triangles 7, 7,T; and
B B, Bj so that the true leg lengths will not be revealed in the ele-
vation view.

However, there is a global optimum for whicha =b/2, h=>5/2,
and h/€=1/./2, shown in Fig. 6a, where £ is the length of each
connector. The six connectors lie pairwise in planes perpendicular
to the triangles T, 7,5 and B, B; B3. The elevation view captures the
true lengths £ of the pair of connectors B;T, and B, T5.

Note that the connecting struts are all length £ = /(2Q)h =b/./2
and that they are inclined at 45 deg to the base and top triangles.

T,

Fig. 5 Star of David plan view.
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Fig. 6a Optimal Star of David design.
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Fig. 6b Two views of 44 structure, n=4.
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Fig. 6c Two views of 5-5 structure, n=35.
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Fig. 6d Two views of 6-6 structure, n=6.
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Fig. 6e Two views of 8-8 structure, n=8.

A careful comparison of the results for the global optimum design
of the 3-3 truss, the 4—4 truss,” and 66 truss® reveals that there
is an extraordinarily simple global optimum design for any n-—n
truss ring with double connecting struts. The vertical distance A
between the UCR and LCR is always given by 4 =b/2. The con-
necting strut lengths £ = ./(2)h =b/./2 are equal and are always
inclined to the UCR and LCR equally at 45 deg. The variable a
is easily obtained by direct measurement from the plan view or by
calculation:

a=b-cos(rr/n) (10)
For the square (Fig. 6b):
n=4, ¢ = 45deg, a/b = cos(45deg) = \/5/2 = 0.707
For the pentagon (Fig. 6¢):
n=35, ¢ = 36deg, a/b = cos(36deg) ~ 0.809
For the hexagon (Fig. 6d):
n==6, ¢ = 30deg

a/b = cos(30deg) = +/3/2 ~ 0.866

For the octagon (Fig. 6e):

n =38, ¢ = 22.5deg, a/b = cos(22.5deg) ~ 0.924

The preceding design procedure essentially determines the con-
necting polygon with side ¢ that yields the optimum static stability.

The support truss obtained for n = 6 (6—6) with double connecting
points is shown in Fig. 7. This was obtained using the construction
illustrated by Fig. 6d. Note that M. M. Mikulas and G. Greschik
originally proposed this as a conical truss type during in April
2000 at the 2nd Space Technology Alliance Inflatable Structures
Working Group, sponsored by the U.S. Air Force Research Labo-
ratory, Dayton, Ohio. Note that the designs based on the optimal
static/geometric criteria, which stem from line geometry, immedi-
ately yield conical trusses.

Optimization of Ring Trusses with Single
Connecting Points

For each staticaily optimized truss with double connecting points,
a corresponding truss can be obtained with single connecting points
simply by separating the pairs of double connecting points. This
is shown in Fig. 8, where the points By, Bz, B3 and Ty, T3, T3 of
the 3-3 truss (Fig. 5) are each separated into corresponding pairs
of pOil'ltS Bll; B21, Bzz, ey and Tu, T12, T22, PN Corresponding
pairs of points are connected to form six connecting struts, By T11,
By T1g, BTy, B3 T3, BTs3, and By3Ts;.

The optimized solution is more complicated because a pair of new
variables, the dimensionless ratios & and 8, have been introduced,
which essentially measure the separation (Fig. 8). Care must be taken
in choosing « and 8 because it has been shown that the structure

T, T,

T, T,

B, B,

Fig. 7 Double connecting 6—6 antenna support structure.

Fig. 8 Construction of a 66 truss from a 3--3 truss.
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Fig. 9 Function f(c,B)=3af —2a —28+1=0 configurations of
(det J)=0.

is in an unstable critical point when the ratios & and 8 satisfy the

condition
Fla,B)=3aB—20—28+1=0 an

The function f (e, 8) =0 is shown in Fig. 9, which also illustrates
two statically unstable configurations.?

It has been determined that given b =2a for values o = % and
B=13 then h=0.3b and £=./(2)h for optimum static stability.
The six connecting struts are inclined at 45 deg to the top and base,

and the distance between the planes is 2 = 0.3b, compared with the
distance & = 0.5b for the original 3-3 truss.

Conclusions

A new method for optimized ring trusses was presented. Ring
trusses with three—eight sides were addressed. A closed-form solu-
tion for the triangular (octahedron) design was determined. Whereas
single and double connecting points were the focus of this work,
triple (or higher) connections are possible and can be optimized us-
ing the same procedures used herein. A conical truss type was dis-
covered during the development of the 66 optimal static/geometric
design. This can be traced directly from line geometry theory, as
would be expected.
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