
 
 

 

  
 

Abstract—The vast majority of Autonomous Ground 
Vehicles in development today operate with GPS based 
navigation systems.  While the accuracy of GPS systems 
has improved greatly over the previous decade, the 
stability of their signal has not.  The phenomenon is 
commonly known as “drift” and may have a magnitude 
of more than a few meters.  This paper outlines a method 
for vision based correction and localization of vehicle 
position through consideration of a priori information 
and perceived road characteristics.  The approach is 
called Vision Based Position Correction for Urban 
Environments, and it will be deployed in the 2007 DARPA 
Urban Challenge.   

 

I. INTRODUCTION 
he approach outlined herein addresses the problem of 
localizing a vehicle’s position within a roadway to 
compensate for large transient fluctuations in GPS 

position estimates.  Many researchers have managed to solve 
one part of the problem or another through techniques 
including inertial measurement correction, Kalman filtering 
[1], and base station correction.  However, the real-world 
problem of safely navigating urban environments introduces 
additional complications.  Issues like satellite occlusion and 
inertial drift can lead even the best differential positioning 
systems to have massive discontinuities in their solutions.     

In this paper we present methods for vision based lane 
detection which is then used to correct the vehicle’s position 
in a global reference frame.  To do so, several image 
processing and transformation techniques are used to localize 
road lane demarcations.  The main contribution of this work 
is to describe the means by which meta-information 
generated from these demarcations can be combined with a 
priori information describing a road network to yield a more 
robust position estimate. 

The procedure begins by first capturing a color frame from 
a camera mounted on the vehicle.  This frame is then 
processed via color segmentation and edge detection to 
isolate any lane demarcations on the roadway.  The resulting 
edge image is then run through a series of Hough transforms 
to obtain a geometric representation of the lane demarcations.  
Finally, the most dominant lines returned from the Hough 
transform are mapped onto a virtual 2-D plane which 
represents the area around the vehicle.  The lines are then 
used to estimate the current vehicle lane, its boundaries, and 
the relative pose of the vehicle within the lane.  This 
information is then compared to that of the a priori 
 

 

information to generate corrections to the road-network.  By 
then projecting the raw GPS estimated position onto the 
vehicle’s lane, an estimate of the error in vehicle position can 
be generated.  This estimated error is then used to create a 
corrected position estimate which can then be used to map 
additional sensors.   

The impetus for the development of the above method 
originated from shortcomings identified in the architecture of 
the University of Florida’s 2005 DARPA Grand Challenge 
vehicle.  During the 2005 DARPA Grand Challenge, the 
University of Florida’s vehicle was removed from the race 
after driving off the graded road and into a thick growth of 
brush.  In the weeks after the conclusion of the race, a detailed 
case-study was performed on the log data from the day of the 
race around the time the vehicle was stopped.  The result of 
the analysis showed that a drift in the GPS solution resulted in 
the traversability data from the various sensors being 
incorrectly mapped.  This error led the vehicle to believe it 
was no longer on the road and to attempt a course correction, 
ultimately driving off the road.  However, while the drift was 
initially slow and small in magnitude, the correction was not.  
As the vehicle was now bogged down in thick brush, it could 
not re-acquire the road before the mapped sensor data had 
drifted back.  In the previous architecture an a priori 
pseudo-sensor was employed named the Boundary Smart 
Sensor.  This sensor painted a wide corridor from waypoint to 
waypoint which represented the divide between in and out of 
bounds regions.  When the GPS solution corrected, the 
vehicle was left outside of the corridor and thus believed it 
was out of bounds and could no longer plan a path.  Thus, a 
clear need was defined for a system which can correct for 
transient errors in position estimation.  The following 
sections outline the new vehicle platform, world 
representation architecture, and vision based position 
correction. 

II. VEHICLE PLATFORM 

A. Vehicle 
The University of Florida’s 2007 team chose a 2006 Toyota 

Highlander Hybrid.  This choice was made primarily due to 
the hybrid’s ability to provide sufficient power for operating 
the required sensors, actuators and computer systems.  
Moreover, the Highlander offered the best power, 
performance, and interface for its price point. The vehicle, 
named the N3 (NaviGATOR-III), is equipped with multiple 
LADAR range finders and an array of 6 high speed cameras, 
along with multiple differential GPS antennas. Figure 1 
depicts the new platform. 
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Figure 1.  University of Florida’s 2007 DARPA Urban Challenge vehicle 

B. Vision Sensors 
The computer vision sensor package for the N3 consists of 

six USB 2.0 high-speed cameras.  The cameras are mounted 
in various configurations around the vehicle including some 
actuated locations which allow the cameras to pan. Figure 2 
depicts the forward facing camera array.   

 
 

Figure 2.  Center mounted camera array for forward lane finding. 
 

 Each camera provides color video at rates in excess of 
90Hz. at a resolution of 640×300.  This resolution is 
user-configured and was chosen to limit image size and 
improve overall processing performance.   

C. Arbitration Architecture 
The basis for the sensing and planning systems of the new 

platform is a distributed network topology.  Multiple Smart 
Sensors consume raw sensor data, do initial processing on 
that data, and publish findings in a globally referenced 
tessellated grid known as a traversability grid.  The grid 
representation of the sensor information is then passed to 
various arbitration and specialist systems over a DOD 
standard JAUS (Joint Architecture for Unmanned Systems) 
network [2].  Figure 3 outlines the basic topology of the 
sense-plan-act architecture. 

 

 
 

Figure 3.  Sense-plan-act architecture. 

 
The sensor information from various sensors is then fused 

into a cohesive model of the world by overlaying the most 
recent output of a sensor onto a global grid maintained by the 
arbitration components.  Since each grid is tied to a global 
reference point grids can be asynchronously fused [3], [4]. 

III. ADAPTIVE LANE TRACKING 

A. Introduction 
A road is defined by several characteristics.  These may 

include color, shape, texture, edges etc.  Because the outdoor 
environment presents an array of difficulties including 
dynamic lighting conditions, poor road conditions, and road 
networks which are not consistent from region to region, it 
was decided that a multi-tiered approach was needed.  Thus, 
for the targeted application of the Urban Challenge it was 
decided that a more adaptive lane tracking system would be 
needed.  The proposed method uses two separate approaches 
to generate a more reliable solution.   In the previous 
challenge, the vehicle was required to operate in an off-road 
environment where there were no lane demarcations [5], [6].  
However, in the current context, the road will be generally 
paved with lanes defined by painted demarcations. These 
additional environmental cues allow for the extraction of 
color and edge information from a given image and to use that 
information to derive a geometric equation of a line [7]. 

B. Edge-finding 
Edge detection is accomplished by use of the Canny edge 

detector [8].  The two threshold values that the detector 
utilizes allow a great deal of tuning and yield a sufficiently 
segmented image.  To further enhance the edge detector’s 
performance, only the red channel of the source image is 
processed.  This channel is used because it has the greatest 
content in both the yellow and white colors and can thus 
provide the greatest contrast between yellow/white regions 
and background.  Figure 4 depicts the results of the Canny 
edge filter with two sets of threshold values.   
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Figure 4. (a) Original road Image. (b) Red Channel Image. (c) Canny filter 
image with 50 / 200 threshold value. (d) Canny filter image with 130 / 200 

threshold value. 
 



 
 

 

C. Color-segmentation 
Color segmentation is accomplished by first generating a 

dynamic set of color threshold values via the K-means 
clustering algorithm from data extracted from training areas 
in the source image.  The K-means distributions are then used 
to complete a color segmentation of the source image and 
finally edge detection is performed on the now segmented 
image. 
1) Training area:  The selection of proper training areas is 
critical.  Four training regions are utilized; each consisting of 
a 320×20 pixel region.   Each region is split to extract its red 
channel and generate a binary image via an adaptive 
threshold.  However, a training area can be contaminated by 
debris or even lens glare.  Such cases are handled by checking 
the number of valid pixels and contours in the mask does not 
exceed a threshold.  From these binary masks, the RGB 
content is extracted and used to populate the K-means 
algorithm.  Figure 5 depicts sample training regions and their 
masks. 
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Figure 5. (a) Training area of yellow lane marker without noise. (b)  Training 

area of yellow lane marker with noise. (c),(d)  Filtered binary mask 
 
2) K-mean Clustering:  The basis of the K-mean algorithm is 
to minimize the distance between the members of an output 
set within the space of the entire data set.  This process is 
accomplished by iteratively comparing elements of the set to 
minimize the distance between the two points.  For the color 
segmentation, this process is used to cluster pixel elements 
returned from the training areas.  The RGB values of the 
pixels extracted from the training areas are mapped to a 
Cartesian coordinate frame.  The result is a point cloud of 
pixels as shown in Figure 6. 

 
 

Figure 6.  RGB color distribution for white channel K-means. 

 From the distribution, the min and max RGB values as 
well as their mean values are determined and used for the 
color segmentation process. However, due to the limitations 
of the deployed camera, a given distribution may contain 
some pixel values which do not represent the desired yellow 
or white values.  Such pixels often appear on the fringe of 
lane demarcations where the CCD interpolates between the 
road color and the line color. Figure 7 shows a zoomed region 

from a training segment with such distortion. 
 

 
Figure 7.  Block effect. 

 
 To limit the impact of the fringe values from the training 
areas, the K-means algorithm is tuned to return only the most 
tightly grouped regions of continuous color, i.e. the 
orange/yellow area in the center of the line segments.  The 
K-means algorithm is defined in Equation 1 as: 
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where x is the RGB pixel vector, μ  is the RGB K-mean, k is 
the number of clusters, and i is the number of pixels. Initial 
yellow and white pixel values are selected from the original 
road image. The results of color segmentation using the 
K-means distributions are presented in Figure 8. 
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Figure 8. . Color segmentation (a) yellow lane demarcations (b) white lane 
demarcations. 

  
Wherein Figure 8-a shows considerable noise on the right 

periphery of the lane, this image is sufficient to isolate the 
lane region from the image. 

D. Hough-transformation 
After the edge and color based images are generated, a 

standard Hough transformation is applied to extract lane 
demarcations [9]. By sorting the Hough lines found from 
these images a single set of the strongest Hough lines is 
generated.  Figure 9, located below, shows sample results of 
this process where the yellow line represents the left 
boundary, the blue line represents the right boundary, the red 
line represents the estimated center of the lane, and the green 
horizontal lines represent the lane width at 5 and 20 meters 
respectively. 
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Figure 9.  Results of Color based and Edge based lane finding with estimated 

center line. 



 
 

 

E. Lane Estimation 
In the real world, road conditions may be such that only 

one demarcation is visible.  Even on roads in good repair with 
proper striping, the problem of losing a lane reference may 
occur.  This happens in regions such as intersections, 
cross-roads, or traffic merges.  For these instances, an 
estimation technique is employed to estimate the likely 
location of the missing lane boundary and the lane center.  
This is accomplished by using a previous estimated lane 
width to project where the boundary should be located.  In the 
case where no demarcations are visible the methodology is 
incapable of yielding a result.  Figure 10 depicts sample 
results of the lane estimation process. 
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Figure 10. Lane Estimation (a) yellow lane marker (b) white lane marker 

 
From the Figure, it is clear that the estimation process can 

effectively determine the location of the missing boundary 
and is useful when faced with dashed lines.   

F. Global map generation 
The next step is to project the line segments found using 

the Hough transform onto the traversability grid.  The 
perspective transformation matrix is calculated from camera 
calibration parameters and the instantaneous roll, pitch and 
yaw.  The resulting grid provides a wide field of view.  
However, the projection is subject to gaps in the mapped data 
which is an artifact of the limited pixels available in distant 
regions of the image.  The gaps depicted above are filled via 
linear interpolation.  Though this process can introduce some 
error to the grid, the un-interpolated data would otherwise 
hinder the planning process. Figure 11 depicts an interpolated 
result and the subsequent painted lanes. 
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Figure 11.  Traversability Grid. (a) With interpolation and 
estimated lane center line elements. (b) With painted lanes 

and boundaries. 
 
 The resulting grid contains numeric value which the 
arbitration component can convert to the appropriate 
traversability values according to the current vehicle behavior.  

The additional lanes shown in Figure 11 are created by 
estimating the distance in pixels between the lane boundaries.  
This estimated lane width is then used to draw both the center, 
right and left lanes.  It is important to note that the left and 
right lanes are drawn whether or not they exist.  This allows 
the arbitration component to adjust their traversability value 
according to a priori information on the number of lanes and 
the lane the vehicle currently occupies.   
 

G. Meta-Data Generation 
While the traversability grid representation is the end result 

of the image processing steps outlined above, additional 
information is generated along the way which makes position 
correction possible.  Information such as lane width 
combined with the estimated center of the current lane is used 
to determine the vehicle pose within the lane.  This estimated 
pose includes both the lateral offset from the center of the 
lane as determined from the distance in pixels from the center 
of the image to the estimated lane center.  Moreover, the 
angular orientation in the lane is derived by comparing the 
instantaneous heading of the vehicle to the heading of the 
lane center.  The result is a full description of how the vehicle 
is posed within the perceived lane.  

IV. CORRECTION OF ESTIMATED POSITION 

A. Introduction 
For the 2007 DARPA Urban Challenge, DARPA has 

specified a standardized model for representing the world in a 
vector format.  This format is known as an RNDF (Road 
Network Definition File).  The file, generated in advance of 
an autonomous run, contains surveyed GPS waypoints for 
various lanes and roads which make up a larger network.  
Each road is composed of one or more segments which 
contain two or more waypoints.  Each segment represents a 
lane on a given road and contains additional information such 
as lane borders (single/double yellow, white, dashed-white, 
etc.) as well as which waypoints correspond to turns and 
intersections.    Moreover, DARPA has also specified a MDF 
or Mission Data File.  This file contains the series of goal 
waypoints the vehicle must achieve and the order in which to 
achieve them.   

B. The World Vector Driver 
The architecture developed for the N3 is multi-tiered. First, 

a high-level planning component generates a course routing 
through the road network defined in the RNDF.  The 
high-level-plan is then provided to a lower level component 
that is responsible for reconciling the high-level-plan (HLP) 
with the vision-based lane data.  This component, named the 
World Vector Driver (WVD), generates a set of GPS 
waypoints which represent the immediate goals of the vehicle.  
A sample depiction of the output of the WVD is given in 
Figure 12. 

 The figure shows how the WVD generates straight line 
segments between goal waypoints along the mission.  
Additionally, the WVD paints a virtual lane with a discounted 
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Figure 12.  WVD a priori lanes (a) accurate GPS (b) with 

drift 
 
cost in the center of the lane.  The vehicle is shown as the 
orange and blue box in the center of the grid.  However, if the 
GPS solution undergoes a drift, the WVD may generate a grid 
much like that of Figure 13 (b).  Such a drift may result in the 
vehicle planning an unnecessary correction to re-acquire the 
lane.  For this reason, it is necessary to correct the a priori 
RNDF and the GPS position.   
 

C. Globally Referenced Data 
The N3’s architecture depends on spatial transformations 

to asynchronously fuse data from numerous sensors into the 
same common reference frame.   This is only possible if each 
sensor’s output is tied to a globally referenced point.  To do so, 
the GPS position in Latitude and Longitude is converted to 
Northing and Easting or Universal Transverse Mercator 
(UTM) which is based on the WGS84 standard.  This process 
means that each bit of sensor information is mapped relative 
to a fixed point, and thus can be retained within the world 
model and rolled as the vehicle traverses a given area.  The 
process for mapping sensor information is outlined in Figure 
13 below. 

 

 
 

Figure 13.  Process of Mapping Sensor Data to the Global Reference Frame. 
 
 By utilizing a series of transformation matrices, data is 
mapped from the sensor coordinate frame to the vehicle 
coordinate frame and subsequently to the global reference 
frame by multiplying by a transformation matrix.  The 
generic homogenized transformation is defined as: 
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where α ,β, and γ represent rotations about the x, y, and z axis 
respectively and x, y, and z represent the translation along the 
x, y, and z axis respectively.  In general, the transformation 
from the vehicle to the global reference frame is generated 
solely from GPS and inertial measurement information.   

 

D. Correction Methodology 
The GPS correction is generated by first determining the 

current occupied lane.  Next, the a priori road-network is 
augmented when needed to adjust for angular offsets in the 
perceived road and the a priori straight lane segment.  Third, 
the raw GPS solution is projected on to the a priori 
lane-center normal to the GPS solution.  Finally, the projected 
position is offset position to account for the vehicle’s offset 
(if any) from the center of the lane.  The above procedures 
only address the issue of error in the direction normal to the 
heading of the vehicle.  This limitation is a result of the lack 
of a fixed reference point in the image which can be 
correlated to an a priori GPS location.  However, in the case 
where a reference point does exist (such as the stop-line at an 
intersection) the error in the direction of the vehicle’s heading 
can be corrected.  Through much the same process of 
recognition, comparison, and correction.     
 

E. Lane Determination 
The process of determining the occupied lane is a simple 

comparison and look-up process.  The WVD receives 
information from the lane-finder stating the type of lane 
boundaries sensed, and the relative position of the vehicle 
within the boundaries.  By comparing this information with 
that stored in the RNDF for the current road the vehicle is on, 
the WVD is able to ascertain the most likely lane the vehicle 
occupies.   

F. World Vector Driver RNDF Correction 
The information contained within the RNDF must be 

considered sparse.  This means that the data provided to 
define the road network may contain waypoints that are 
separated by vast distances.  As such, it cannot be guaranteed 
that the road between two consecutive waypoints is a straight 
line.  Thus, to make use of the a priori road-network 
information, and to improve the quality of its content, it is 
necessary to generate dynamic corrections to the vector road 
representation.  The correction to the WVD’s world 
representation is determined by calculating the error between 
the estimated lane heading and the straight-line heading of the 
a priori lane the vehicle currently occupies.  Such a scenario is 
depicted in Figure 14 below. 

If the angular error between the sensed lane-center and the 
a priori lane-center is greater than a threshold value, a series 
of bread crumb waypoints are generated.  The bread crumbs 
are dropped both in front of and behind the vehicle along the 
heading of the perceived lane-center.  These points are then 
used to re-generate the WVD representation of the world with 
the additional waypoints to provide a more accurate contour  
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Figure 14.  A priori lane correction (a) Initial a priori lanes 
(b) lanes after the addition of bread-crumbs  

of the road.  Figure 14 depicts the additional waypoints 
generated and their effect on the contour of the WVD road 
network 
 With these additional waypoints interspersed between 
original RNDF waypoints, the road becomes more fully 
defined.  Moreover, this additional information is retained for 
future reference if and when the same segment is traversed.   
 

G. Lateral Correction 
The lateral correction of the GPS solution is accomplished 

by projecting the raw GPS position onto the corrected WVD 
lane.  This projection may result in offsets in either or both the 
Northing and Easting directions.  The normal used for the 
projection is determined as shown in equation 3 below. 

 ( )OL
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Where P  represents the location of the point along the 
lane normal with respect to the GPS solution, S  represents 
the direction of the lane center, OLS  represents the moment of 
the lance center about the global origin, a is the initial 
solution of the GPS position estimate and normP  represents the 
global location of the projected GPS location.  By computing 
the normal to the lane and then translating the position 
estimate to this point we can in effect snap the GPS estimate 
to the current lane.   

The northing and easting components of the correction are 
then calculated as the sine and cosine of the angle of the 
vector P

aS respectively.   Finally, we can further improve the 
estimate by again considering a lateral offset representative of 
the vehicles relative pose within the lane as perceived by the 
lane finder.  Figure 15 (a) depicts the lateral correction 
process. 
From the figure, it is apparent that the lateral correction is 
sufficient to localize the vehicle within a given road-network.  
This is because while there remains an error in the direction 
of the vehicle’s heading, its magnitude is insignificant 
relative to the overall length of the roadway.  However, this 
error can also be minimized when a fixed surveyed reference 
exists within the cameras visual range.  Such a reference 
might be a stop-line at an intersection which is part of the 
RNDF surveyed road-network.   As Figure 15 (b) shows, the 
error in the direction of travel can then be minimized by first 
completing the lateral corrections and then comparing any  
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Figure 15.  Lateral GPS Offset. (a) Without fixed reference, 
lateral only  (b) With fixed reference lateral and longitudinal  

offset error between the perceived location of the stop-line 
with the a priori data. 

V. CONCLUSIONS 
The lane finding and pose estimation algorithms presented 

here have been developed for implementation on the Univer-
sity of Florida 2007 DAPRA Urban Challenge vehicle.  This 
work addresses the problem of geo-referencing sensed and a 
priori information in order to achieve autonomous navigation 
in an urban environment under conditions where GPS data is 
subject to errors.  This is a significant problem that must be 
addressed for successful realization of such systems. 
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