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This editorial is intended to be a plea to researchers in the field of robotic
systems to reconsider the theory of so-called “hybrid control” for the simulta-
neous control of force and motion.

The theory I refer to is one that has been used in quite a large number of
articles that have been presented in both national and international conferences
on robotics and in the technical journals of learned societies. In these articles
the aims are to model constrained-motion tasks, grasping operations and cali-
bration of robots using “orthogonal complements™ in one form or another.
Because the basis for these articles is fallacious, they can only be called errone-
ous except when, serendipitously, a correct result appears through the simplicity
or symmetry of the problem; in such cases the articles become dangerously
misleading. _

It is of even greater concern to see the fallacious arguments enshrined in
several textbooks on robotics for engineering students. These books contain
chapters which explain in detail the meaning and the use of “orthogonal comple-
ments.”

Reduced to simplest terms, the fallacy lies in the definition of “*orthogonality™
applied to instantaneous rigid-body motions, called twists and equally to forces/
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couples in combinations, these being called wrenches. Twists and wrenches are
not new concoctions. They date back well over a century. The definition of
orthogonality that generates the erroneous “orthogonal complements™ in hybrid
control, is, essentially, a statement that two twists

T, =[V; Q]
and

T, =[V,; £,]
are orthogonal when

Tl*T2=V1’V2+H1'ﬂ2=ﬂ$.

¥

Admittedly this statement does not usually appear in the literature in this
form, but rather it appears in the form of sparse matrices containing ones and
zeros, such as

(1 0] [0 0 0 0]

0 0 1000
o |0 0] L4 geo |0 100

0 1 0000

00 0010

L0 0] [0 0 0 1)

It is so plausible, so intuitive, and at first sight so good an idea to state that
the pair of column vectors in § are “orthogonal™ and to go further and to state
that § and §* are “orthogonal complements.” However the dimensions of
elements of this matrix representation are not immediately obvious, whereas it
is blatantly obvious that the dimensions for the products V, -V, and {2, - £},
are, respectively, (length/s)? and (radian/s)®. The expression T, - T is therefore
non-homogeneous. For example, employing this definition of orthogonality, the
following pair of twists

T,=[1,1,1;2,2, 2]
and
T.=[2,2,2; -1, -1, =1},

*A pair of wrenches w; = [f;; m,] and w; = [f>; m,] are similarly said to be ‘orthogonal’
when wy-wy=f,-f+m; - m, =0,
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are “orthogonal” (T, - T =0) when, for instance, V, and V; are measured in
m/s. Consider now that V, and V, are to be measured in cm/s; then the exact
same pair of motions are expressed by

T,=[1x10%1x10%1x10%2,2,2]
and
T, =[2%10%,2 x 102,2 x 10, —1, -1, —1].

It is obvious that the twists are no longer “‘orthogonal” because, T, T2 # 0.

Moreover it is a simple matter to check that, given two instantaneous rigid-
body motions for which “orthogonality” (as above defined) is satisfied, when
we shift the origin of the coordinates used in the determination, the condition
of “orthogonality” is no longer satisfied. Accordingly this kind of “orthogonal-
ity is, from the practical point of view, meaningless, because it is origin-
dependent. It can even be said that, given any two instantaneous rigid-body
motions, it is possible to find points that can be used as origin of coordinates
for which they are “orthogonal complements.” And this conclusion is ridiculous.

Thus the absurdity is obvious if one accepts that one can obtain an o2 of
answers to the same problem depending upon which point one selects as the
origin for a coordinate system (an =« of points fill space)! Can a robot manipu-
lator really behave differently in an ©* ways when performing a given constrain-
ed-motion task? The preposterous conclusion, that it can, follows from the
dependence on the choice of the origin. For example, if an origin of a reference
system for a simple insertion task is chosen off the axis of the hole, an unwanted
and uncontrollable translational velocity parallel to the hole axis can be induced
causing either an unacceptable insertion rate or a withdrawal of the peg.

Conclusion: Modern hybrid control theory based on the definition of orthogon-
ality, shown above to be fallacious, is completely devoid of meaning whether
from the point of view of practicability or geometry. For, when we use such a
theory to determine whether two given instantaneous motions are “‘orthogonal,”
we encounter (1) dimensional inconsistency, (2) dependence on the choice of
units used, and (3) dependence on the choice of the origin of coordinates.

Now let me justify even further my categorical debunking of the fallacious
theory by viewing the geometry of twists (and wrenches) from a more advanced
viewpdnt that is well established in both geometry and mechanics. Twists and
wrenches can be properly represented in terms of real orthogonal spaces (see
for example [1,2]). viz. a real orthogonal space is a real vector space endowed
with a symmetric bilinear form. Consider that two twists are represented by

T: [Va.x, Va_).ry Voz; ﬂ.":!‘ ﬂ_}r: ﬂz]
and

T*=[VA, V%, Vi, Qr, ﬂ_;’,ﬂ;’].




Journal or hobolic Systems—"1493U

The fallacious definition of orthogonality endows the space with the following
bilinear form,

H(T, T*) = V. V3 + Vo, Vo, + Vo, V3. + Q. 0F + 0,07 + 0.0F,
The corresponding quadratic form is positive definite,
H(T, T)=Ve + V2, + V3, + Q3 + 05 + Q2.

This again -::llsplavs the dimensional mcnnsmtancv and therefore, it should
not be used.

However for the group of Euclidean motions, the orthogonal space for twists
is in fact endowed with two symmetric bilinear forms®, and linear combinations
of them can be employed. No other symmetric bilinear form can be meanmgfuf:’y
employed. The first 1s

KI(T, T*) = V(0¥ + Vo, Q0 + V,.QF + O, V5, + Q. VE + Q.VE,
which is known as the Klein form. The corresponding quadratic form is
KT, T)=2(Voelde + Vo, 0, + V,.00.),

which is indefinite.¥ The second bilinear form is degenerate (the kernel of the
associated vector space is non-zero),

KI( T, T*) = (O) VoxV:x + ([})VayV:y + ([})Vozv:z + ﬂxﬂr + ﬂyﬂr + ﬂ:‘ﬂ:*

which is known as the Killing form (each (0) being a zero). The corresponding
quadratic form is

Ki(T, T) =02+ 03+ 02,

which is positive semidefinite. Analogous expressions can straight away be
written for the orthogonal spaces of wrenches.

Both KI(T, T*) and Ki(7, T*) are not only invariant with a choice of origin
but also with a change of units, and a pair of twists can be orthogonal with
respect to either or both of the Klein and the Killing forms. For instance, when
two twists are orthogonal with respect to the Killing form the axes of their
rotations are mutually perpendicular.

On the contrary the employment of the symmetric bilinear form H(T, T*) =
0 to define orthogonal subspaces and to define *“‘natural constraints” as the
“orthogonal complements” of artificial constraints lacks all meaning. Using such

*R. Von Mises recognized both of these symmetric bilinear forms back in 1924,
1t is zero when the twist is a pure rotor or a pure translation. Otherwise it is positive
or negative.
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a formulation the subspaces defining natural constraints are not invariant with a
choice of origin or a change of dimensions. The nonsensical outcome of applying
“orthogonal complements” in hybrid control leads to the definition of terms
such as “‘natural constraints™ or “motion a body cannot have,” which are
absolutely meaningless. The “motion a body cannot have” does not even consti-
tute a linear subspace. It i1s not closed under addition.

Sir Robert Stawell Ball got it right, over a hundred years ago when he
defined twists of freedom to quantify the constrained motion of a rigid body and
wrenches of constraint to quantify the forces and couples which produce no
motion of a quiescent body.?* Any wrench of constraint w is related to any
twist of freedom T by the vanishing of the reciprocal product of Ball,

weT=[fim]-[V;Q]=fV+m:Q

which can be related directly to the vanishing of the Klein form K{(T, T*) =
0. -

My brief remarks support, I hope, my deep concern about the wrong track
that quite a number of workers have taken in the field of hybrid control. I am
the first to admit that Sugimoto and I were wrong about “orthogonality™ in our
joint article.® I deliberately refrain from drawing the reader’s attention to any
other specific articles that stem from the fallacious theory I have outlined, but
anybody sufficiently interested can easily trace some of them. I confess that
when I co-authored reference 5, the “‘orthogonal complement™ did seem to be
a good idea at the time! However, since then, a number of articles have
been published which attempt to present a proper treatment of kinestatics by
establishing a firm geometric foundation.®®* These articles stem from reference
10.

The author sincerely hopes that this editorial has explained the issues in
simple terms so that a reader can appreciate easily the problems which exist
with the “orthogonal complements™ associated with hybrid control. In addition
to reference 10. three theses have appeared,''™' which further clarifv the
geometric meaning of twists and wrenches. The last thesis addresses a number
of key experimental issues involved.

Finally, Loncaric and Brockett'*'® explained that there “is no natural positive
definite metric on SE(3).” This important result was obtained independently of

“the literature available on the subject that was published in engineering and
robotic journals prior to 1985.

The author would like to acknowledge the support of NSF, Grant No. MSM-
8810017 for research on the subject of hybrid twist and wrench control.

*Reference 9 addresses the problem of origin dependence of hvbrid control theory
described earlier by applving hybrid control theory to an insertion task with the origin of
the reference system chosen off the hole axis. Unwanted and uncontrollable translational
velocities parallel to the hole axis are induced.
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